数据挖掘入门 - 二手车交易价格预测(一)

一、赛题理解

赛题:零基础入门数据挖掘 - 二手车交易价格预测

1.1 赛题概况

比赛要求参赛选手根据给定的数据集,建立模型,二手汽车的交易价格。

赛题以预测二手车的交易价格为任务,数据集报名后可见并可下载,该数据来自某交易平台的二手车交易记录,总数据量超过40w,包含31列变量信息,其中15列为匿名变量。为了保证比赛的公平性,将会从中抽取15万条作为训练集,5万条作为测试集A,5万条作为测试集B,同时会对name、model、brand和regionCode等信息进行脱敏。

1.2 数据概况


一般而言,对于数据在比赛界面都有对应的数据概况介绍(匿名特征除外),说明列的性质特征。了解列的性质会有助于我们对于数据的理解和后续分析。

Tip:匿名特征,就是未告知数据列所属的性质的特征列。


  • name - 汽车编码
  • regDate - 汽车注册时间
  • model - 车型编码
  • brand - 品牌
  • bodyType - 车身类型
  • fuelType - 燃油类型
  • gearbox - 变速箱
  • power - 汽车功率
  • kilometer - 汽车行驶公里
  • notRepairedDamage - 汽车有尚未修复的损坏
  • regionCode - 看车地区编码
  • seller - 销售方
  • offerType - 报价类型
  • creatDate - 广告发布时间
  • price - 汽车价格
  • v_0’, ‘v_1’, ‘v_2’, ‘v_3’, ‘v_4’, ‘v_5’, ‘v_6’, ‘v_7’, ‘v_8’, ‘v_9’, ‘v_10’, ‘v_11’, ‘v_12’, ‘v_13’,‘v_14’(根据汽车的评论、标签等大量信息得到的embedding向量)【人工构造 匿名特征】

数据全都脱敏处理,为label encoding形式,即数字形式

pandas数据读取

import pandas as pd

## 载入训练集和测试集;
Train_data = pd.read_csv('train.csv', sep=' ')
Test_data = pd.read_csv('testA.csv', sep=' ')
print('Train data shape:',Train_data.shape)
print('TestA data shape:',Test_data.shape)
Train data shape: (150000, 31)
TestA data shape: (50000, 30)
Train_data.head()
SaleIDnameregDatemodelbrandbodyTypefuelTypegearboxpowerkilometer...v_5v_6v_7v_8v_9v_10v_11v_12v_13v_14
007362004040230.061.00.00.06012.5...0.2356760.1019880.1295490.0228160.097462-2.8818032.804097-2.4208210.7952920.914762
1122622003030140.012.00.00.0015.0...0.2647770.1210040.1357310.0265970.020582-4.9004822.096338-1.030483-1.7226740.245522
221487420040403115.0151.00.00.016312.5...0.2514100.1149120.1651470.0621730.027075-4.8467491.8035591.565330-0.832687-0.229963
337186519960908109.0100.00.01.019315.0...0.2742930.1103000.1219640.0333950.000000-4.5095991.285940-0.501868-2.438353-0.478699
4411108020120103110.051.00.00.0685.0...0.2280360.0732050.0918800.0788190.121534-1.8962400.9107830.9311102.8345181.923482

5 rows × 31 columns

1.3 预测指标


本赛题的评价标准为MAE(Mean Absolute Error):

M A E = ∑ i = 1 n ∣ y i − y ^ i ∣ n MAE=\frac{\sum_{i=1}^{n}\left|y_{i}-\hat{y}_{i}\right|}{n} MAE=ni=1nyiy^i
其中 y i y_{i} yi代表第 i i i个样本的真实值,其中 y ^ i \hat{y}_{i} y^i代表第 i i i个样本的预测值。


一般问题评价指标说明:

什么是评估指标:

评估指标即是我们对于一个模型效果的数值型量化。(有点类似与对于一个商品评价打分,而这是针对于模型效果和理想效果之间的一个打分)

一般来说分类和回归问题的评价指标有如下一些形式:

分类算法常见的评估指标:

  • 对于二类分类器/分类算法,评价指标主要有accuracy, [Precision,Recall,F-score,Pr曲线],ROC-AUC曲线。
  • 对于多类分类器/分类算法,评价指标主要有accuracy, [宏平均和微平均,F-score]。
## accuracy
import numpy as np
from sklearn.metrics import accuracy_score
y_pred = [0, 1, 0, 1]
y_true = [0, 1, 1, 1]
print('ACC:',accuracy_score(y_true, y_pred))
ACC: 0.75
## Precision,Recall,F1-score
from sklearn import metrics
y_pred = [0, 1, 0, 0]
y_true = [0, 1, 0, 1]
print('Precision',metrics.precision_score(y_true, y_pred))
print('Recall',metrics.recall_score(y_true, y_pred))
print('F1-score:',metrics.f1_score(y_true, y_pred))
Precision 1.0
Recall 0.5
F1-score: 0.6666666666666666
## AUC
import numpy as np
from sklearn.metrics import roc_auc_score
y_true = np.array([0, 0, 1, 1])
y_scores = np.array([0.1, 0.4, 0.35, 0.8])
print('AUC socre:',roc_auc_score(y_true, y_scores))
AUC socre: 0.75

对于回归预测类常见的评估指标:

  • 平均绝对误差(Mean Absolute Error,MAE),均方误差(Mean Squared Error,MSE),平均绝对百分误差(Mean Absolute Percentage Error,MAPE),均方根误差(Root Mean Squared Error), R2(R-Square)

    • 平均绝对误差(Mean Absolute Error,MAE):平均绝对误差,其能更好地反映预测值与真实值误差的实际情况,其计算公式如下:
      M A E = 1 N ∑ i = 1 N ∣ y i − y ^ i ∣ MAE=\frac{1}{N} \sum_{i=1}^{N}\left|y_{i}-\hat{y}_{i}\right| MAE=N1i=1Nyiy^i

    • 均方误差(Mean Squared Error,MSE),均方误差,其计算公式为:
      M S E = 1 N ∑ i = 1 N ( y i − y ^ i ) 2 MSE=\frac{1}{N} \sum_{i=1}^{N}\left(y_{i}-\hat{y}_{i}\right)^{2} MSE=N1i=1N(yiy^i)2

    • R2(R-Square)
      残差平方和:
      S S r e s = ∑ ( y i − y ^ i ) 2 SS_{res}=\sum\left(y_{i}-\hat{y}_{i}\right)^{2} SSres=(yiy^i)2
      总平均值:
      S S t o t = ∑ ( y i − y ‾ i ) 2 SS_{tot}=\sum\left(y_{i}-\overline{y}_{i}\right)^{2} SStot=(yiyi)2
      其中 y ‾ \overline{y} y表示 y y y的平均值
      得到 R 2 R^2 R2表达式为:
      R 2 = 1 − S S r e s S S t o t = 1 − ∑ ( y i − y ^ i ) 2 ∑ ( y i − y ‾ ) 2 R^{2}=1-\frac{SS_{res}}{SS_{tot}}=1-\frac{\sum\left(y_{i}-\hat{y}_{i}\right)^{2}}{\sum\left(y_{i}-\overline{y}\right)^{2}} R2=1SStotSSres=1(yiy)2(yiy^i)2
      R 2 R^2 R2用于度量因变量的变异中可由自变量解释部分所占的比例,取值范围是 0~1, R 2 R^2 R2越接近1,表明回归平方和占总平方和的比例越大,回归线与各观测点越接近,用x的变化来解释y值变化的部分就越多,回归的拟合程度就越好。所以 R 2 R^2 R2也称为拟合优度(Goodness of Fit)的统计量。
      y i y_{i} yi表示真实值, y ^ i \hat{y}_{i} y^i表示预测值, y ‾ i \overline{y}_{i} yi表示样本均值。得分越高拟合效果越好。

import numpy as np
from sklearn import metrics

# MAPE需要自己实现
def mape(y_true, y_pred):
    return np.mean(np.abs((y_pred - y_true) / y_true))

y_true = np.array([1.0, 5.0, 4.0, 3.0, 2.0, 5.0, -3.0])
y_pred = np.array([1.0, 4.5, 3.8, 3.2, 3.0, 4.8, -2.2])

# MSE
print('MSE:',metrics.mean_squared_error(y_true, y_pred))
# RMSE
print('RMSE:',np.sqrt(metrics.mean_squared_error(y_true, y_pred)))
# MAE
print('MAE:',metrics.mean_absolute_error(y_true, y_pred))
# MAPE
print('MAPE:',mape(y_true, y_pred))
MSE: 0.2871428571428571
RMSE: 0.5358571238146014
MAE: 0.4142857142857143
MAPE: 0.1461904761904762
## R2-score
from sklearn.metrics import r2_score
y_true = [3, -0.5, 2, 7]
y_pred = [2.5, 0.0, 2, 8]
print('R2-score:',r2_score(y_true, y_pred))
R2-score: 0.9486081370449679

1.4. 赛题分析

  1. 此题为传统的数据挖掘问题,通过数据科学以及机器学习深度学习的办法来进行建模得到结果。
  2. 此题是一个典型的回归问题。
  3. 主要应用xgb、lgb、catboost,以及pandas、numpy、matplotlib、seabon、sklearn、keras等等数据挖掘常用库或者框架来进行数据挖掘任务。
  4. 通过EDA来挖掘数据的联系和自我熟悉数据。
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值