自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 收藏
  • 关注

原创 多视角聚类(五)Incomplete Multiview Spectral Clustering With Adaptive Graph Learning

一.解决问题提出一个可以用于非完整实例的子空间聚类方法。用作者的话说大多数文章解决的是a情况,他解决的是b情况,更有真实意义。二.主要思路1.多视角子空间聚类第一部分是一个实例Xv的自表示,第二部分Z是公共子空间,Zv是特有子空间,让公共部分和特有的部分的重叠尽可能少。而要使重叠尽可能少,则可以使所有特有子空间之和最小。然后将第二部分换一下,成了这样:2.此文改进首先作者将目标函数改成了这样:表示在v视角下没有丢失的实例。这个式子表示的是,,它被这样表示:

2020-11-10 16:38:33 1113

原创 多视角聚类(四)Partial Multi-View Clustering via Consistent GAN

一.解决问题现有的不完备多视角聚类大多是基于核或者非负矩阵分解。但是这些方法有两点缺陷1)它们不能应用于大规模数据;2)他们没有考虑学习一个适合聚类的潜在空间的同时也很好地推断出缺失的视图二.主要思路一.划分首先在两个视角上,作者将数据分为了完整(paired)和单视角(Unpaired)。二.GAN网络结构1.编码器E1/E2E1由L个全连接层组成,用来对视角1的输入数据X(1)进行处理得到视角1的潜在特征代表Z1这里是通过一个非线性函数。E2同理,得到。同时为了得

2020-11-10 13:15:20 1274 3

原创 多视角聚类(三)Anchors Bring Ease: An Embarrassingly Simple Approach to Partial Multi-View Clustering

Guo, J., & Ye, J. (2019). Anchors Bring Ease: An Embarrassingly Simple Approach to Partial Multi-View Clustering. Proceedings of the AAAI Conference on Artificial Intelligence, 33, 118–125. https://doi.org/10.1609/aaai.v33i01.3301118一.主要亮点及解决问题根据选取

2020-11-07 20:27:06 748

原创 多视角聚类学习(二)-Dual Shared-Specific Multiview Subspace Clustering

一.问题聚焦现在的聚类算法大多只关注了视角间的相关性而可能忽略了每个视角的独特性,这可能会丢失一些有效信息。很小有方法在聚类的过程中既整合了多个视角又保留了特定视角的独特性。二.主要方法1.基于自表示的子空间聚类(Self-representation-based subspace clustering)假设每个数据点能够被它们原始数据的线性组合所表示。那么自表示模型的公式可以表示为:L表示特征维度,N表示样本个数。Z是自表示矩阵且里面每个元素zi是从原始数据X中的数据点xi编码得到

2020-11-02 12:44:17 1492

原创 多视角聚类(一)Multi-view clustering on data with partial instances and clusters

多视角聚类(一)Multi-view clustering on data with partial instances and clustersLinlin Zong ∗, Xianchao Zhang, Xinyue Liu, Hong Yu Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, Dalian School of Software, Dalian University o.

2020-10-31 13:17:18 2151

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除