python_DataFrame的loc和iloc取数据 基本方法总结


在这里插入图片描述
关于python数据分析常用库pandas中的DataFrame的loc和iloc取数据 基本方法总结归纳及示例如下:

1.准备一组DataFrame数据

import pandas as pd
df = pd.DataFrame({
    'AAA': [120, 101, 106, 117, 114, 122],
    'BBB': [115, 100, 110, 125, 123, 120],
    'CCC': [109, 112, 125, 120, 116, 115],
    'DDD': 'ABCDEFG'
}, index=[1, 2, 3, 4, 5, 6])

2.loc 标签索引

loc通过标签 在DataFrame中选取数据

2.1 loc 获取行

2.1.1 loc 获取一行

print(df)
print("=======================")
# 获取一行数据
print(df.loc[1])

在这里插入图片描述

2.1.2 loc 获取多行

print(df)
print("=======================")
print(df.loc[[1, 3]])

在这里插入图片描述

2.1.3 loc 获取多行(切片)

print(df)
print("=======================")
print(df.loc[1:5])

在这里插入图片描述

2.2 loc获取指定数据(行&列)

当对行和列同时指定时,如果指定值不连续,则需要放在一个列表中;如果指定值是连续的,并采用切片的方式,则不需要加方括号。loc的参数中,左边表示行,右边表示列。

  • 示例一
print(df)
print("=======================")
print(df.loc[2:4, ['AAA', 'CCC']])

在这里插入图片描述

  • 示例二
print(df)
print("=======================")
print(df.loc[[1, 3], ['BBB', 'DDD']])

在这里插入图片描述

  • 示例三
print(df)
print("=======================")
print(df.loc[:, 'BBB':])

在这里插入图片描述


3. iloc 位置索引

loc通过位置 在DataFrame中选取数据

3.1 iloc 获取行

3.1.1 iloc 获取单行

以获取第二行为例

print(df)
print("=======================")
print(df.iloc[1])  # 第2行

在这里插入图片描述

3.1.2 iloc 获取多行

获取下标为0,2的行(第1、3行)

print(df)
print("=======================")
print(df.iloc[[0, 2]])  # 第1、3行。

在这里插入图片描述

获取下标为1到3的行(第2、3、4行)

print(df)
print("=======================")
print(df.iloc[1: 4])  # 第2、3、4行。

在这里插入图片描述

获取下标为1的行,及其后边的所有行

print(df)
print("=======================")
print(df.iloc[1:])  # 第二行及以后。

在这里插入图片描述

3.2 iloc获取指定数据(行&列)

  • 获取所有行,指定列
print("=======================")
print(df.iloc[:, [1, 3]])

在这里插入图片描述

  • 获取所有行,指定连续的列
print("=======================")
print(df.iloc[:, :2])

在这里插入图片描述

  • 获取指定行,指定列
print("=======================")
print(df.iloc[[2, 5], [1, 3]])

在这里插入图片描述

### 回答1: pandas中的DataFrame对象有两个方法lociloc,用于选择数据loc方法使用标签来选择数据iloc方法使用整数位置来选择数据。 例如,df.loc[2,'column']表示选择第2行和'column'列的数据,而df.iloc[2,3]表示选择第3行和第4列的数据。 这两个方法都可以使用切片来选择多行或多列的数据。例如,df.loc[2:5,'column1':'column3']表示选择第2到第5行和'column1'到'column3'列的数据。 ### 回答2: Python中的DataFramePandas库的一个重要数据结构,用于处理和分析具有不同类型的数据DataFramelociloc都用于从DataFrame中选择特定行和列。 loc是基于行和列的标签进行选择。使用loc,我们可以传入行和列的标签,以选择特定的数据。 例如,假设我们有一个DataFrame df,其中包含三列 A、B、C 和五行数据。我们可以使用以下语法选择数据: ``` df.loc[行标签, 列标签] ``` 其中,行标签和列标签可以是具体的数值、列表、切片或布尔索引。 iloc是基于行和列的索引进行选择。使用iloc,我们可以传入行和列的索引位置,以选择特定的数据。 例如,假设我们有一个DataFrame df,其中包含三列 A、B、C 和五行数据。我们可以使用以下语法选择数据: ``` df.iloc[行索引, 列索引] ``` 其中,行索引和列索引可以是具体的数值、列表、切片或布尔索引。 需要注意的是,行和列的索引从0开始计数。 总结起来,lociloc都是用于从DataFrame中选择特定行和列的方法loc是基于标签进行选择,而iloc是基于索引进行选择。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

侯小啾

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值