>> %%RBF神经网络自适应控制
clear all;
close all;
ts=1;
sys=tf(2.21,[210,1]);
dsys=c2d(sys,ts,'z');
[num,den]=tfdata(dsys,'v');
r1=0.08;r2=1;%前一时刻状态与控制输入对应的权值
xite=0.5; %学习速率
alfa=0.05; %动量因子
beta=0.01; %
x=[0,0,0]';%网络输入向量
ci=zeros(3,6);%结点的中心矢量
bi=10*ones(6,1);%结点的宽度参数
w=0.10*ones(6,1);%权值
h=[0,0,0,0,0,0]';%高斯函数
ci_1=ci;ci_3=ci_1;ci_2=ci_1;
bi_1=bi;bi_2=bi_1;bi_3=bi_2;
w_1=w;w_2=w_1;w_3=w_1;
u_1=0;y_1=0;
xc=[0,0,0]';
error_1=0;error_2=0;
kp0=0.01;ki0=0.01;kd0=0.01;
kp_1=kp0;
kd_1=kd0;
ki_1=ki0;
xitekp=0.15;
xitekd=0.15;
xiteki=0.15;
ts=0.001;
for k=1:1:1000
time(k)=k*ts;
yd(k)=1.0; %设定