octave随机初始化

本文介绍了神经网络训练中权重的初始化方法,强调了随机生成接近0的初始值的重要性。在训练过程中,先进行反向传播,然后进行梯度检验,确保计算的准确性。最后,利用梯度下降等优化算法最小化代价函数,找到参数的最佳值。整个流程从随机初始化开始,逐步优化直至获得最优解。
摘要由CSDN通过智能技术生成

实现代码

 

rand(10,12)     随机生成一个10*11的矩阵,矩阵的值都在0-1之间。

*(2*INIT_EPSILON)  都会乘2epsilon

- INIT_EPSILON             再减去epsilon   

最后得到

需要注意的是:这里的epsilon和之前梯度检验里的epsilon没有任何关系

总结:为了训练神经网络

1.首先应该把权重随机初始化为一个接近0且

 2.进行反向传播

3.进行梯度检验

4.使用梯度下降或者其他高级优化算法来最小化代价函数J

这个关于参数θ的函数整个过程从为参数选取一个随机初始化的值开始,最后通过梯度下降或者其他高级优化算法就能得出θ的最优值。

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值