**给定一个数组A[0,1,…,n-1],请构建一个数组B[0,1,…,n-1],其中B中的元素B[i]=A[0]A[1]…A[i-1]A[i+1]…A[n-1]。不能使用除法。(注意:规定B[0] = A[1] * A[2] * … * A[n-1],B[n-1] = A[0] * A[1] * … * A[n-2];)
对于A长度为1的情况,B无意义,故而无法构建,因此该情况不会存在。
示例1
输入
[1,2,3,4,5]
输出
[120,60,40,30,24]
【解题思路】:
B[i]的值可以看作下图的矩阵中每行的乘积。下三角用连乘可以很容求得,上三角,从下向上也是连乘。因此我们的思路就很清晰了,先算下三角中的连乘,即我们先算出B[i]中的一部分,然后倒过来按上三角中的分布规律,把另一部分也乘进去。
import java.util.Arrays;
import java.util.Scanner;
public class Solution {
public static void main(String[] args) {
Scanner scannerc = new Scanner(System.in);
int n = scannerc.nextInt();
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = scannerc.nextInt();
}
int b[] = multiply(arr);
System.out.println(Arrays.toString(b));
}
public static int[] multiply(int[] A) {
int n = A.length;
int[] b = new int[n];
b[0] = 1;
for (int i = 1; i < n; i++) {
b[i] = b[i-1] * A[i-1];
}
int tmp = 1;
for (int i = n-2; i >= 0 ; i--) {
tmp *= A[i+1];
b[i] *= tmp;
}
return b;
}
}