常见的排序算法的应用场景及java实现方式

1. 冒泡排序(Bubble Sort)

  • 原理:通过重复遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。
  • 优点:实现简单,容易理解。
  • 缺点:效率低下,时间复杂度为O(n^2),不适合大数据量排序。
  • 稳定性:稳定。
    public static void bubbleSort(int[] arr) {
        int n = arr.length;
        boolean swapped;
        for (int i = 0; i < n - 1; i++) {
            swapped = false;
            for (int j = 0; j < n - 1 - i; j++) {
                if (arr[j] > arr[j + 1]) {
                    // 交换 arr[j] and arr[j + 1]
                    int temp = arr[j];
                    arr[j] = arr[j + 1];
                    arr[j + 1] = temp;
                    swapped = true;
                }
            }
            if (!swapped) break; // 遍历一轮结束仍然没有交换时,无需继续遍历比较
        }
    }
    

2. 选择排序(Selection Sort)

  • 原理:每次从未排序的部分找出最小(或最大)的元素,放到已排序序列的末尾。
  • 优点:实现简单,交换次数较少。
  • 缺点:比较次数较多,时间复杂度为O(n^2),不适合大数据量排序。
  • 稳定性:不稳定。
    public static void selectionSort(int[] arr) {
        for (int i = 0; i < arr.length - 1; i++) {
            int minIndex = i;
            for (int j = i + 1; j < arr.length; j++) {
                if (arr[j] < arr[minIndex]) {
                    minIndex = j;
                }
            }
            // 交换 arr[i] 和 arr[minIndex]
            int temp = arr[i];
            arr[i] = arr[minIndex];
            arr[minIndex] = temp;
        }
    }
    

3. 插入排序(Insertion Sort)

  • 原理:将未排序的数据插入到已排序序列中的适当位置,逐步构建排序数组。
  • 优点:实现简单,对于小数据量或部分有序数据效率较高。
  • 缺点:时间复杂度为O(n^2),对于大数据量效率低。
  • 稳定性:稳定。
    public static void insertionSort(int[] arr) {
        for (int i = 1; i < arr.length; i++) {
            int key = arr[i];
            int j = i - 1;
            while (j >= 0 && arr[j] > key) {
                arr[j + 1] = arr[j];
                j--;
            }
            arr[j + 1] = key;
        }
    }
    

4. 希尔排序(Shell Sort)

  • 原理:是插入排序的一种更高效的改进版本,通过将原始数组按不同的增量分组,对每一组使用插入排序算法排序。
  • 优点:比普通的插入排序快得多,可以达到接近O(n^(3/2))的时间复杂度。
  • 缺点:增量序列的选择影响效率,稳定性受增量序列影响。
  • 稳定性:不稳定。
    public static void shellSort(int[] arr) {
        int n = arr.length;
        for (int gap = n / 2; gap > 0; gap /= 2) {
            for (int i = gap; i < n; i++) {
                int temp = arr[i];
                int j;
                for (j = i; j >= gap && arr[j - gap] > temp; j -= gap) {
                    arr[j] = arr[j - gap];
                }
                arr[j] = temp;
            }
        }
    }
    

5. 归并排序(Merge Sort)

  • 原理:使用分治法,将数组分成两半,递归地对两半进行排序,然后将两个已排序的半部分合并在一起。
  • 优点:时间复杂度稳定为O(n log n),适合大数据量排序。
  • 缺点:需要额外的空间来存放临时数组,空间复杂度为O(n)。
  • 稳定性:稳定。
    public static void mergeSort(int[] arr, int l, int r) {
        if (l < r) {
            int m = l + (r - l) / 2;
            mergeSort(arr, l, m);
            mergeSort(arr, m + 1, r);
            merge(arr, l, m, r);
        }
    }
    
    private static void merge(int[] arr, int l, int m, int r) {
        int n1 = m - l + 1;
        int n2 = r - m;
    
        int[] L = Arrays.copyOfRange(arr, l, m + 1);
        int[] R = Arrays.copyOfRange(arr, m + 1, r + 1);
    
        int i = 0, j = 0;
        int k = l;
        while (i < n1 && j < n2) {
            if (L[i] <= R[j]) {
                arr[k] = L[i];
                i++;
            } else {
                arr[k] = R[j];
                j++;
            }
            k++;
        }
    
        while (i < n1) {
            arr[k] = L[i];
            i++;
            k++;
        }
    
        while (j < n2) {
            arr[k] = R[j];
            j++;
            k++;
        }
    }
    

6. 快速排序(Quick Sort)

  • 原理:同样采用分治法,选择一个“基准”元素,将数组分为小于基准和大于基准的两部分,然后递归地对这两部分进行排序。
  • 优点:平均时间复杂度为O(n log n),在实际应用中效率很高。
  • 缺点:最坏情况下退化为O(n^2),且递归深度较大时可能导致栈溢出。
  • 稳定性:不稳定。
    public static void quickSort(int[] arr, int low, int high) {
        if (low < high) {
            int pi = partition(arr, low, high);
            quickSort(arr, low, pi - 1);
            quickSort(arr, pi + 1, high);
        }
    }
    
    private static int partition(int[] arr, int low, int high) {
        int pivot = arr[high];
        int i = low - 1;
        for (int j = low; j < high; j++) {
            if (arr[j] < pivot) {
                i++;
                // 交换arr[i]和arr[j]
                int temp = arr[i];
                arr[i] = arr[j];
                arr[j] = temp;
            }
        }
        // 交换arr[i+1]和arr[high]
        int temp = arr[i + 1];
        arr[i + 1] = arr[high];
        arr[high] = temp;
        return i + 1;
    }
    

7. 堆排序(Heap Sort)

  • 原理:首先构建一个最大堆或最小堆,然后逐步移除堆顶元素并重新调整堆,以达到排序效果。
  • 优点:时间复杂度为O(n log n),不需要额外的存储空间。
  • 缺点:稳定性较差,且实现相对复杂。
  • 稳定性:不稳定。
    public static void heapSort(int[] arr) {
        int n = arr.length;
    
        for (int i = n / 2 - 1; i >= 0; i--) {
            heapify(arr, n, i);
        }
    
        for (int i = n - 1; i > 0; i--) {
            // 设置
            int temp = arr[0];
            arr[0] = arr[i];
            arr[i] = temp;
    
            heapify(arr, i, 0);
        }
    }
    
    private static void heapify(int[] arr, int n, int i) {
        int largest = i; 
        int left = 2 * i + 1; // left = 2*i + 1
        int right = 2 * i + 2; // right = 2*i + 2
    
        if (left < n && arr[left] > arr[largest]) {
            largest = left;
        }
    
        if (right < n && arr[right] > arr[largest]) {
            largest = right;
        }
    
        if (largest != i) {
            int swap = arr[i];
            arr[i] = arr[largest];
            arr[largest] = swap;
    
            heapify(arr, n, largest);
        }
    }
    

8. 计数排序(Counting Sort)

  • 原理:适用于一定范围内的整数排序,通过统计每个数值出现的次数来排序。
  • 优点:时间复杂度为O(n+k),对于数据范围较小的情况非常高效。
  • 缺点:只适用于整数排序,且数据范围受限。
  • 稳定性:稳定。
    public static void countingSort(int[] arr) {
        int max = Arrays.stream(arr).max().getAsInt();
        int[] count = new int[max + 1];
        for (int num : arr) {
            count[num]++;
        }
        int index = 0;
        for (int i = 0; i < count.length; i++) {
            while (count[i] > 0) {
                arr[index++] = i;
                count[i]--;
            }
        }
    }
    

选择排序算法时,应考虑数据的特性、数据量的大小、对时间效率和空间效率的要求,以及是否需要稳定排序等因素。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值