1. 冒泡排序(Bubble Sort)
- 原理:通过重复遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。
- 优点:实现简单,容易理解。
- 缺点:效率低下,时间复杂度为O(n^2),不适合大数据量排序。
- 稳定性:稳定。
public static void bubbleSort(int[] arr) { int n = arr.length; boolean swapped; for (int i = 0; i < n - 1; i++) { swapped = false; for (int j = 0; j < n - 1 - i; j++) { if (arr[j] > arr[j + 1]) { // 交换 arr[j] and arr[j + 1] int temp = arr[j]; arr[j] = arr[j + 1]; arr[j + 1] = temp; swapped = true; } } if (!swapped) break; // 遍历一轮结束仍然没有交换时,无需继续遍历比较 } }
2. 选择排序(Selection Sort)
- 原理:每次从未排序的部分找出最小(或最大)的元素,放到已排序序列的末尾。
- 优点:实现简单,交换次数较少。
- 缺点:比较次数较多,时间复杂度为O(n^2),不适合大数据量排序。
- 稳定性:不稳定。
public static void selectionSort(int[] arr) { for (int i = 0; i < arr.length - 1; i++) { int minIndex = i; for (int j = i + 1; j < arr.length; j++) { if (arr[j] < arr[minIndex]) { minIndex = j; } } // 交换 arr[i] 和 arr[minIndex] int temp = arr[i]; arr[i] = arr[minIndex]; arr[minIndex] = temp; } }
3. 插入排序(Insertion Sort)
- 原理:将未排序的数据插入到已排序序列中的适当位置,逐步构建排序数组。
- 优点:实现简单,对于小数据量或部分有序数据效率较高。
- 缺点:时间复杂度为O(n^2),对于大数据量效率低。
- 稳定性:稳定。
public static void insertionSort(int[] arr) { for (int i = 1; i < arr.length; i++) { int key = arr[i]; int j = i - 1; while (j >= 0 && arr[j] > key) { arr[j + 1] = arr[j]; j--; } arr[j + 1] = key; } }
4. 希尔排序(Shell Sort)
- 原理:是插入排序的一种更高效的改进版本,通过将原始数组按不同的增量分组,对每一组使用插入排序算法排序。
- 优点:比普通的插入排序快得多,可以达到接近O(n^(3/2))的时间复杂度。
- 缺点:增量序列的选择影响效率,稳定性受增量序列影响。
- 稳定性:不稳定。
public static void shellSort(int[] arr) { int n = arr.length; for (int gap = n / 2; gap > 0; gap /= 2) { for (int i = gap; i < n; i++) { int temp = arr[i]; int j; for (j = i; j >= gap && arr[j - gap] > temp; j -= gap) { arr[j] = arr[j - gap]; } arr[j] = temp; } } }
5. 归并排序(Merge Sort)
- 原理:使用分治法,将数组分成两半,递归地对两半进行排序,然后将两个已排序的半部分合并在一起。
- 优点:时间复杂度稳定为O(n log n),适合大数据量排序。
- 缺点:需要额外的空间来存放临时数组,空间复杂度为O(n)。
- 稳定性:稳定。
public static void mergeSort(int[] arr, int l, int r) { if (l < r) { int m = l + (r - l) / 2; mergeSort(arr, l, m); mergeSort(arr, m + 1, r); merge(arr, l, m, r); } } private static void merge(int[] arr, int l, int m, int r) { int n1 = m - l + 1; int n2 = r - m; int[] L = Arrays.copyOfRange(arr, l, m + 1); int[] R = Arrays.copyOfRange(arr, m + 1, r + 1); int i = 0, j = 0; int k = l; while (i < n1 && j < n2) { if (L[i] <= R[j]) { arr[k] = L[i]; i++; } else { arr[k] = R[j]; j++; } k++; } while (i < n1) { arr[k] = L[i]; i++; k++; } while (j < n2) { arr[k] = R[j]; j++; k++; } }
6. 快速排序(Quick Sort)
- 原理:同样采用分治法,选择一个“基准”元素,将数组分为小于基准和大于基准的两部分,然后递归地对这两部分进行排序。
- 优点:平均时间复杂度为O(n log n),在实际应用中效率很高。
- 缺点:最坏情况下退化为O(n^2),且递归深度较大时可能导致栈溢出。
- 稳定性:不稳定。
public static void quickSort(int[] arr, int low, int high) { if (low < high) { int pi = partition(arr, low, high); quickSort(arr, low, pi - 1); quickSort(arr, pi + 1, high); } } private static int partition(int[] arr, int low, int high) { int pivot = arr[high]; int i = low - 1; for (int j = low; j < high; j++) { if (arr[j] < pivot) { i++; // 交换arr[i]和arr[j] int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } } // 交换arr[i+1]和arr[high] int temp = arr[i + 1]; arr[i + 1] = arr[high]; arr[high] = temp; return i + 1; }
7. 堆排序(Heap Sort)
- 原理:首先构建一个最大堆或最小堆,然后逐步移除堆顶元素并重新调整堆,以达到排序效果。
- 优点:时间复杂度为O(n log n),不需要额外的存储空间。
- 缺点:稳定性较差,且实现相对复杂。
- 稳定性:不稳定。
public static void heapSort(int[] arr) { int n = arr.length; for (int i = n / 2 - 1; i >= 0; i--) { heapify(arr, n, i); } for (int i = n - 1; i > 0; i--) { // 设置 int temp = arr[0]; arr[0] = arr[i]; arr[i] = temp; heapify(arr, i, 0); } } private static void heapify(int[] arr, int n, int i) { int largest = i; int left = 2 * i + 1; // left = 2*i + 1 int right = 2 * i + 2; // right = 2*i + 2 if (left < n && arr[left] > arr[largest]) { largest = left; } if (right < n && arr[right] > arr[largest]) { largest = right; } if (largest != i) { int swap = arr[i]; arr[i] = arr[largest]; arr[largest] = swap; heapify(arr, n, largest); } }
8. 计数排序(Counting Sort)
- 原理:适用于一定范围内的整数排序,通过统计每个数值出现的次数来排序。
- 优点:时间复杂度为O(n+k),对于数据范围较小的情况非常高效。
- 缺点:只适用于整数排序,且数据范围受限。
- 稳定性:稳定。
public static void countingSort(int[] arr) { int max = Arrays.stream(arr).max().getAsInt(); int[] count = new int[max + 1]; for (int num : arr) { count[num]++; } int index = 0; for (int i = 0; i < count.length; i++) { while (count[i] > 0) { arr[index++] = i; count[i]--; } } }
选择排序算法时,应考虑数据的特性、数据量的大小、对时间效率和空间效率的要求,以及是否需要稳定排序等因素。