7.java数据结构与算法-前缀、中缀、后缀表达式(笔记)

一、前缀中缀后缀表达式的认识

前缀:
在这里插入图片描述
中缀:

在这里插入图片描述
后缀:

在这里插入图片描述

二、如何将中缀表达式转换为后缀表达式

思路:
在这里插入图片描述
例子:

在这里插入图片描述

步骤表格:
在这里插入图片描述
后缀表达式求值的方法:

在这里插入图片描述
代码演示:

package stack;

public class Operation {
	// 可以返回运算符对应的优先级
	private static int ADD = 1;
	private static int SUB = 1;
	private static int MUL = 2;
	private static int DIV = 2;

	// 写一个方法返回对应的优先级数字
	public static int getValue(String operation) {
		int result = 0;
		switch (operation) {
		case "+":
			result = ADD;
			break;
		case "-":
			result = SUB;
			break;
		case "*":
			result = MUL;
			break;
		case "/":
			result = DIV;
			break;
		default:
			System.out.println("不存在该运算符");
			break;
		}
		return result;
	}
}

package stack;

import java.util.ArrayList;
import java.util.List;
import java.util.Stack;

public class PolandNotation {
	public static void main(String[] args) {
		String suffixExpression = "1+((2+3)*4)-5";

		List<String> ls = toInfixExpressionList(suffixExpression);
		System.out.println(ls);
		List<String> l = parseSuffixExpreesionList(ls);
		System.out.println(l);
		int num = calculate(l);
		System.out.println(num);
	}

	// 完成对逆波兰表达式的运算
	/*
	 * 从左至右扫描,将3和4压入堆栈 遇到运算符,因此弹出5和7,计算出7x5=35,将35入栈 将6入栈
	 * 最后-运算符,计算出35-6的值,即29,由此得出结果
	 */
	public static int calculate(List<String> ls) {
		Stack<String> stack = new Stack<String>();
		// 遍历ls
		for (String item : ls) {
			// 这里使用正则表达式
			if (item.matches("\\d+")) {// 匹配的是多位数
				// 入栈
				stack.push(item);
			} else {
				// pop出两个数并运算,再入栈
				int num2 = Integer.parseInt(stack.pop());
				int num1 = Integer.parseInt(stack.pop());
				int res = 0;
				if (item.equals("+")) {
					res = num1 + num2;
				} else if (item.equals("-")) {
					res = num1 - num2;
				} else if (item.equals("*")) {
					res = num1 * num2;
				} else if (item.equals("/")) {
					res = num1 / num2;
				} else {
					throw new RuntimeException("运算符有误");
				}
				// 把res入栈
				stack.push("" + res);
			}

		}
		// 最后留在stack中的数据是运算结果
		return Integer.parseInt(stack.pop());
	}

	// 写一个方法,把中缀表达式String转为List
	public static List<String> toInfixExpressionList(String s) {
		// 定义一个List,存放中缀表达式对应的内容
		List<String> ls = new ArrayList<String>();
		int i = 0;// 这是一个指针,用于遍历中缀表达式字符串
		String str = "";// 对多位数的拼接
		char c;// 每遍历到一个字符就放入到c
		do {
			if ((c = s.charAt(i)) < 48 || (c = s.charAt(i)) > 57) {// 如果是一个非数字则直接转化为字符串加人List
				ls.add("" + c);
				i++;
			} else {// 如果是一个数字要考虑是否为多位数
				str = "";// 先将str置空
				while (i < s.length() && (c = s.charAt(i)) >= 48 && (c = s.charAt(i)) <= 57) {
					str = "" + c;
					i++;
				}
				ls.add(str);
			}
		} while (i < s.length());
		return ls;
	}

	// 将中缀表达式转换为后缀表达式
	// s="1+((2+3)*4)-5"
	public static List<String> parseSuffixExpreesionList(List<String> ls) {
		// 定义两个栈
		Stack<String> s1 = new Stack<String>();// 符号栈
		// Stack<String> s2 = new
		// Stack<String>();//数栈,但是数栈没必要使用,因为从始至终s2没有出栈的操作,而且后边还需要逆序输出,因此用栈比较麻烦,所以直接使用List
		List<String> s2 = new ArrayList<String>();
		for (String item : ls) {
			// 如果是一个数,就入s2
			if (item.matches("\\d+")) {
				s2.add(item);
			} else if (item.equals("(")) {
				s1.push(item);
			} else if (item.equals(")")) {
				// 如果是右括号则依次弹出s1栈顶的运算符,并压入s2,直到遇到左括号为止,此时将这一对括号丢弃
				while (!s1.peek().equals("(")) {
					s2.add(s1.pop());
				}
				s1.pop();// 将(弹出s1栈,消除小括号
			} else {
				// 当item的优先级小于等于栈顶的优先级,将s1栈顶的运算符弹出并压入到s2中
				// 缺少一个比较优先级高低的方法
				while (s1.size() != 0 && Operation.getValue(s1.peek()) >= (Operation.getValue(item))) {
					s2.add(s1.pop());
				}
				// 还需要将item压入栈
				s1.push(item);

			}
		}
		while (s1.size() != 0) {
			s2.add(s1.pop());
		}
		return s2;// 因为是存放到List中的,因此按顺序输出就是对应的后缀表达式对应的List
	}
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

诸葛东_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值