Python编程爬虫篇之正则表达式

Python编程爬虫篇之正则表达式

正则表达式简介

基本概念

正则表达式是对字符串操作的一种逻辑公式,就是用事先定义好的一些特定字符及这些特定字符的组合,组成一个“规则字符串”,这个“规则字符串”用来表达对字符串的一种过滤逻辑。也就是一串特殊符号组合在一起形成一定逻辑的字符串,用来验证和过滤出所需要的内容。

正则表达式应用场景

  • 爬虫
  • 表单验证(如手机号、邮箱、身份证等)

Python对正则表达式的支持

普通字符

字母、数字、下划线、汉字以及没有特殊定义的符号都是普通字符。正则表达式中的普通字符在匹配的时候,只匹配与自身相同的一个字符。
例如:表达式c,在匹配字符串abcde时,匹配结果是:成功,匹配内容是c,匹配到的位置开始于2,结束于3。(注:下标从0开始还是从1开始,因当前编程语言的不同而不同)

match()函数

match(pattern,string,flags=0)

  • 第一个参数是正则表达式,如果匹配成功,则返回一个match对象,否则返回None
  • 第二个参数表示要匹配的字符串
  • 第三个参数是标志位,用于控制正则表达式的匹配方式。如:是否区分大小写,多行匹配等等。
    注意:
    match()函数只匹配首个字符

元字符

正则表达式中使用了很多元字符,用来表示一些特殊的含义或功能

表达式匹配
.小数点可以匹配除了换行符\n以外的任意一个字符
|小数点可以匹配除了换行符\n以外的任意一个字符
[]匹配字符集[]中的一个字符
[^]对字符集求反。尖号必须在方括号里的最前面
-定义方括号[]里的字符区间。例如:[a-z]
\对紧跟其后的一个字符进行转义
()对表达式进行分组,将圆括号里的内容当做一个整体,并获得匹配的值
import re

re.match(r'a.c', abc).group()

注意:
在写正则表达式时,如果表达式中出现了一些元字符,而这些元字符又不在正则表达式的逻辑当中(即元字符只是当做普通字符看待),用转义字符 ‘\’ 进行处理一下。

一些无法书写或者具有特殊功能的字符,采用在前面加反斜杠进行转义的方法。
如下表所示

表达式匹配
\r,\n匹配回车和换行符
\t匹配制表符
\\匹配反斜杠\
\^匹配^符号
\$匹配$符号
\.匹配小数点

尚未列出的还有?、*和()等其它的符号,所有正则表达式中具有特殊含义的字符在匹配自身的时候,都要使用反斜杠进行转义。这些转义字符的匹配用法与普通字符类似,也是匹配与之相同的一个字符。

预定义匹配字符集

表达式匹配
\d匹配0-9中任意一个数字
\w匹配0-9、a-z、A-Z、下划线和汉字中的任意一个字符
\s匹配空格、制表符或其它空白
\D\d的反集
\W\w的反集
\S\s的反集

重复匹配

前面的表达式,无论是只匹配一种字符的表达式还是匹配多种字符中任意一个的表达式,都只能匹配一次。但是有时候我们需要对某个字段进行重复匹配,例如手机号码13666666677,可以写成\d\d\d\d\d\d\d\d\d\d\d,但这不是一个恰当的表达式,而且容易出错。这种情况可以使用表达式再加上修饰匹配次数的特殊符号{},不用重复书写表达式就可以实现重复匹配。如:[abcd][abcd]可以写成[abcd]{2}

表达式匹配
{n}表达式重复n次,比如\d{2}相当于\d\d,a{3}相当于aaa
{m,n}表达式至少重复m次,至多重复n次;比如ab{1,3}可以匹配ab或abb或abbb
{m,}表达式至少重复m次
*表达式出现0次到任意次,即匹配任意数量的字符
+表达式至少出现1次

位置匹配

有时候,我们对匹配出现的位置有要求,比如开头、结尾、单词之间等等

表达式匹配
^在字符串开始的地方匹配,符号本身不匹配任何字符
$在字符串结束的地方匹配,符号本身不匹配任何字符
\b匹配一个单词边界,也就是单词和空格之间的位置,符号本身不匹配任何字符
\B匹配非单词边界,即左右两边都是\w范围或者左右两边都不是\w范围时的字符

非贪婪匹配

贪婪和非贪婪模式
在重复匹配时,正则表达式默认总是尽可能多的匹配,这被称为贪婪匹配。例如:针对文本dxxxdxxxd,表达式(d)(\w+)(d)中的\w将匹配第一个d和最后一个d之间的所有字符xxxdxxx。可见,\w+匹配的时候,总是尽可能多的匹配符合它规则的字符。同理,带有?、*和{m,n}的重复匹配表达式都是尽可能多匹配。
非贪婪匹配正好与之相反,即总是匹配符合要求的尽可能少的字符,用表达式 .*?

正则表达式常用方法

方法描述返回值
compile(pattern[,flags])根据包含正则表达式的字符串创建模式对象re对象
search(pattern,string[,flags])在字符串中查找第一个匹配到的对象或者None
match(pattern,string[,flags])在字符串的开始处匹配模式在字符串开头匹配到的对象或者None
split(pattern,string[,maxsplit=0,flags])根据模式的匹配项来分割字符串分割后的字符串列表
findall(pattern,string,flags)列出字符串模式中的所有匹配项所有匹配到的字符串列表
sub(pat,repl,string[,count=0,flags])将字符串中所有的pat的匹配项用repl替换完成替换后的新字符串

compile(pattern,flags=0)
这个方法是re模块的工厂方法,用与将字符串形式的正则表达式编译为Pattern模式对象,可以实现更加效率的匹配。第二个参数flags是匹配模式。使用compile()完成一次转换后,再次使用该匹配模式的时候就不能进行转换了。经过compile()转换的正则表达式对象也能使用普通的re方法。

flags匹配模式

匹配模式描述
re.AASCII字符模式
re.I使匹配对大小写不敏感,也就是不区分大小写的模式
re.L做本地化识别(local-aware)匹配
re.M多行匹配,影响^和$
re.S使 . 这个通配符能够匹配包括换行符在内的所有字符,针对多行匹配
re.U根据Unicode字符集解析字符。这个标志影响\w,\W,\b,\B
re.X该标志给予更灵活的格式以便将正则表达式写的更易于理解

search(pattern,string,flags=0)
在文本内查找,返回第一个匹配到的字符串。它的返回值类型和使用方法与match()一样。唯一的区别是查找的位置不用固定在文本的开头。

findall(pattern,string,flags=0)
作为re模块的三大搜索函数之一,findall()和match()、search()的不同之处在于后两者都是单值匹配,找到一个就停止,直接返回结果不再查找了。findall()是全文查找,它的返回值是一个匹配到的字符串的列表。由于是列表不是对象,所以没有group()、groups()方法,没有start、end、span。如果没有匹配到数据,返回空列表。

split(pattern,string,maxsplit=0,flags=0)
re模块的split()方法和字符串的split()方法类似,都是利用特定的字符去分割字符串。只不过re模块的split()方法可以使用正则表达式,因此更灵活更强大。

分组功能

所谓分组就是在已经匹配到的内容里面去筛选出所需要的内容,相当于二次匹配或二次过滤。
分组使用函数group()groups()

  • group()/group(0):匹配整个分组(第0个分组)
  • group(i):匹配第i个分组
  • groups():匹配除第0个分组之外的所有分组,并将结果放在一个元组里面
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值