CDA打卡活动-Python特征工程入门-4.1

本文介绍了特征工程在机器学习中的重要性,着重讨论了如何通过时间特征如一天中的时间段、高峰时段、工作日和星期几进行数据处理,以提升模型性能。这些时间特征是互联网数据分析中的关键要素,对构建更精准的模型至关重要。
摘要由CSDN通过智能技术生成

特征工程是对原始数据进行一系列工程处理,将其提炼为特征,作为输入供算法和模型使用。如果把机器学习模型简化一下:用已有的和 来训练一个模型,。那么,特征工程就是利用原有的去构造新的,同时配合模型调参,使得最终模型的效果达到最优。我们把通过已有数学公式:,构建新的以取得更好的建模效果,这个特征构建的过程称为特征工程。大道至简,我们日常分析的数据,尤其是互联网数据,大多数是由人类的生产活动产生的,那就离不开时间、空间的概念--字宙,“字"无限空间,“宙"无限时间。我们做特征工程也是一样,时间、空间地理特征也是重中之重,是用来刻画客观世界极其重要的维度,我们先来看一下时间特征:

一天中的哪个时间段

#一天中的哪个时间段
def get_time_period(hour):
    if 0<=hour < 6:
        return "凌晨"
    elif 6<=hour <12:
        return "上午"
    elif 12<= hour <18:
        return "下午"
    else:
        return "晚上"
    
get_time_period(8)
#早高峰、晚高峰
def get_peak_hour (hour):
    if 7<= hour <10:
        return "早高峰"
    elif 17<= hour<20:
        return "晚高峰"
    else:
        return "非高峰时段"
get_peak_hour(7)
#是否工作日
from datetime import datetime

def is_weekday(date_string):
    date = datetime.strptime(date_string,'%Y-%m-%d')
    if date.weekday() <5: # Monday to Friday are:considered weekdays(0 to 4)
        return True
    else:
        return False
is_weekday( '2023-01-16' )
#一周中的星期几
from datetime import datetime

def get_day_of_week(date_string):
    date = datetime.strptime(date_string, '%Y-%m-%d')
    return date.strftime("%A")# 返回星期几的字符串表示,比如"Monday"、"Tuesday"等

get_day_of_week( '2023-01-16')
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值