MySQL知识点总结

数据存储引擎

存储引擎是MYSQL的核心技术,不同的存储引擎使用不同的存储机制、索引技巧、锁定水平并最终提供不同的功能和能力。常见的引擎分为三种:InnoDB存储引擎(MYSQL默认的事务性引擎)、MyISAM存储引擎、Memory存储引擎。
三种存储引擎的功能对比如下表所示:
在这里插入图片描述
总结三种引擎的使用选择如下:
1、InnoDB:适合要提供提交、回滚和崩溃后的安全恢复的事务安全能力,并要求实现并发控制;
2、MyISAM:适合于只读的数据,或者表比较小、可以忍受修复操作数据库;
3、Memory:适用于快速查找数据,用于数据分析中产生的中间数据。‘’

数据库三大范式

1、第一范式:数据库表的每一列都是不可分割的基本数据项,即同一列不能有多个值;
2、第二范式:在第一范式的基础上,非主键列完全依赖于主键,而不能是依赖于主键的一部分。
如:设计订单信息表时,商品名称、商品价格等商品信息与表的主键不相关,而只与商品编号相关,因此可将表设计为订单信息表和商品信息表。
3、第三范式:在第二范式的基础上,非主键列只依赖于主键,不依赖于其他非主键。
如果一张表中出现另一张表的非主键,可以将这两张表用外键关联,而不是将另一张表的非主键直接写在当前表中。
设计数据库表的时候,要尽量遵守三范式,如果不遵守,必须有足够的理由。

参考博客:数据库三大范式

数据库索引类型及原理

索引是一种对数据库表中一列或多列的值进行排序的一种数据结构,指向表中特定的数据内容,从而提高查询效率。

一、为什么要用索引

假设有一张存储了10万个数据(每条数据包含姓名、年龄、身份证号等信息)的表,若没有索引,要想查找姓名为"张三”的身份信息,需要从上到下依次对表中的所有数据进行扫描,找到所有名为张三的数据,这也叫全表查询

可以看出,全表查询的效率非常低,需要逐条对比,因此就需要通过对每条数据建立索引,从而直接通过索引快速查询到数据信息,大大提高了查询效率。

二、数据库索引的类型及原理

1、B+树索引: 适合范围查询、顺序查询,不适合插入、删除数据,是InnoDB、MyISAM的索引方式。
B树与B+树都是用于大量数据查询的一种数据结构,二者有以下特点:
B树:(1)由二叉搜索转变为N叉搜索,树的高度大大降低,查询次数少;
(2)叶子节点、非叶子节点都可以存储多个数据,每次可以读取一页数据,IO次数更少;
(3)通过中序遍历,可以访问树上所有节点,但需要多次往返各个节点之间,效率有待提升;
由B树的特点可知,对于范围查询而言,B树需要通过中序遍历来进行查找,不够完美,B+树在此基础上进行了改进。B+树的特点为:
(1)依旧为N叉树,但是非叶子只保存索引不存储数据,所有数据存储在同一层的叶子节点上,查询性能更稳定;
(2)非叶子节点可保存更多索引,相同的数据,B+树的高度更低,查询的IO次数更少;
(3)所有叶子节点形成一个有序链表,不需要通过中序遍历进行顺序查询,更适合范围查询。
对比可知,B+树最大的优点就是适合范围查询,这在实际应用中是非常广泛的,因此InnoDB选用的就是B+Tree。B+树的缺点就是插入、删除操作非常复杂,一般只用在数据库的查询操作中。
2、哈希索引: 适合单一数据的查找、删除、插入,不适合范围查找,是Memory的索引方式。
哈希表的查询、删除、插入的平均时间复杂度都是O(1),适合每次只查询一条信息。但是对于需要排序查询(对查询的数据进行排序输出)、范围查询(如:大于或小于某值的范围查询),采用哈希索引的时间复杂度会从O(1)退化为O(n),相当于全表查询,效率极低。总结哈希索引的特点如下:
(1)只支持等值比较查询,不支持范围查询;
(2)访问数据的速度非常快,但当哈希冲突较多时,查询效率会大大降低;
(3)哈希索引数据不是按顺序存储的,即无序的,无法用于排序查询。
因此,哈希索引只适用于特定的场合,不要轻易使用。

参考链接:https://blog.csdn.net/bjweimengshu/article/details/105108585

三、索引分类

1、聚簇索引:叶子节点存储整行数据

按照每张表的主键构造一颗B+树,叶子节点存放整张表的行数据。每张表只能有一个聚簇索引,如果没有主键,InnoDB会选择非空的唯一索引代替。如果没有这样的索引,InnoDB会隐式的定义一个主键来作为聚簇索引。

优点:①索引和数据保存在同一颗B+树中,数据访问更快;
②聚簇索引对于主键的范围查找速度非常快。

2、非聚簇索引(辅助索引):叶子节点存储主键值

在聚簇索引之上创建的索引称之为非聚簇索引,其叶子节点存储的数据为主键值,访问数据通常需要二次查找。

假设一张表中有id(主键),order_id(唯一键)两个字段。若使用“where id=14"的条件进行查询,就会走聚簇索引,直接可以查询出对应行数据;若使用“where order_id= 1100202"的条件进行查询,就会走非聚簇索引,会先根据order_id查询到所在行的主键id,再根据主键id走聚簇索引就查到行数据。如下图所示:
在这里插入图片描述
参考博客:聚簇索引与非聚簇索引

回表与覆盖索引

所谓回表查询,就是先通过非聚簇索引定位到主键,再通过聚簇索引定位到数据行。

索引覆盖则是一种避免回表查询的优化策略,即:一个索引包含了所有需要查询的字段值,查询时直接返回索引的数据,而不需要回表查询
举例:假设在学生表的年龄上建立了索引,那么当进行select age from student_table where age < 20的查询时,在索引的叶子节点上,已经包含了age信息,不会再次进行回表查询。

覆盖索引的优点:
1、覆盖索引只需要读取索引,极大减小了数据访问量;
2、避免了回表查询,提高了查询效率。

四、索引失效的情况

在这里插入图片描述
具体索引失效使用的案例可参考:一张图搞懂MySQL的索引失效

五、联合索引最左前缀匹配原则

最左前缀匹配:最左优先,以最左边为起点的任何连续的索引都可以匹配上。遇到范围查询(>、<、between、like)就会停止匹配。

假设有联合索引(a,b,c):
①where条件为(a,b,c)、(b,a,c)、(c,a,b)等,会走联合索引;
②where条件为(a)、(a,b)、(a,b,c),会走联合索引;
③where条件为(b)、(c)、(b,c),不会走索引,会全表扫描;
④where条件为(a,c)时,会走索引,但只使用a的索引。

参考博客:Mysql最左匹配原则

为什么要遵循最左匹配原则

假设有如下B+树,联合索引为(a,b):
在这里插入图片描述
由图可知,最左边的a 都是有序的,分别是 : 1、1、2、2、3、3, 但是右边的b 不一定有序: 1、2、1、4、3、2。但是在a相同的情况下 b是有序的, 如: a=1时 b =1,2 ; a=2时, b= 1,4; a=3时 ,b=1,2。

因此,在筛选数据的时候, 若直接筛选b ,整个就是无序的,需要做全表扫描,此时索引失效;若先筛选a再筛选b ,就可以利用B+树的有序性来加快查找速度。综上,在使用联合索引时需要遵循最左匹配原则。

六、创建索引的原则

1、遵循最左前缀匹配原则
2、为频繁作为查询条件的字段创建索引(如:订单id)
3、更新频繁的字段不适合创建索引(如:订单状态)
4、不能有效区分数据或重复值比较多的字段不适合创建索引(如:性别)
5、尽量拓展索引,不要新建索引。
6、定义有外键的字段一定要创建索引。
(外键:一个表中存放的另一个表的主键。)

当多个用户对数据库并发操作时,会存在数据读取不一致的问题,造成数据混乱。数据库中锁的作用就是保证数据的一致性,与线程同步含义相同。数据库中的锁分为两大类:悲观锁和乐观锁。

悲观锁(Pessimistic Lock) :适用于多写的应用类型

总是假设最坏的情况,每次有事务去拿数据时都会觉得别人会修改,所以每次使用时都会给该数据上锁,而其他事务就会阻塞,直到这个事务释放锁把数据转让给下一个用户。

悲观锁按使用性质可划分为以下几类:
1、共享锁(Share Lock):也叫读锁(S锁),允许多个事务对同一数据共享一把锁,都能访问到数据,但 只能读不能修改。
2、排他锁(Exclusive Lock):也叫写锁(X锁),一个事务获取了某数据的排他锁,其它事务就不能获取其它锁,只有获取排他锁的事务能对数据进行读取和修改。(独占式锁)
3、更新锁:简称U锁,在数据修改操作的初始化阶段锁定可能要被修改的资源,从而避免共享锁竞争排他锁造成的死锁现象。

悲观锁按作用范围可划分为:
1、行锁:锁的作用范围是行级别。对于UPDATE、INSERT、DELETE语句,会自动加排他锁。InnoDB默认采用行锁。 数据库能够确对哪些行进行操作的情况下使用行锁(如使用主键时),如果不知道就使用表锁(不使用主键时)。
行锁的优势:锁的粒度小,发生锁冲突的概率低,并发处理的能力高。
行锁的劣势:开销大,加锁慢。

2、表锁:锁的作用范围是整张表。
表锁的优势:开销小,加锁快。
表锁的劣势:锁的粒度大,发生锁冲突的概率高,并发处理的能力低。

乐观锁(Optimistic Lock):适用于多读的应用类型

与悲观锁相反,总是假设最好的情况,每次有事务去拿数据的时候都认为别人不会修改,所以不会给该数据上锁。但在更新的时候会判断在此期间有没有事务更新了该数据。
乐观锁两种常见的实现方式:
1、版本号机制:一般是在数据表中加上一个数据版本号version字段,表示数据被修改的次数,当数据被修改时,version值会加一。当线程A要更新数据值时,在读取数据的同时也会读取version值,在提交更新时,若刚才读取到的version值为当前数据库中的version值相等时才更新,否则重试更新操作,直到更新成功。
2、CAS算法(compare and swap):一种无锁算法,即在不使用锁的情况下实现多线程之间的变量同步。CAS采用自旋的模式,会浪费CPU资源。原理:通过原子操作来更新数据的值的,比较读取的当前值V与当前线程先前取出的值A是否一样,若一样表示该值在此期间未被其它线程修改,则更新该值,否则重新从数据表读取数据赋给A,再进行V和A的比较,直到更新成功。(具体参考CAS机制)。

参考链接:https://blog.csdn.net/weixin_39651041/article/details/79985715

数据库事务隔离级别

事务就是访问数据库进行的一组数据操作,所有操作必须成功,否则就会回滚所有操作导致失败。

一、事务的四大特性(ACID)

1、原子性(Atomicity): 事务开始后的所有操作要么全部完成,要么全部不完成,不能只完成一部分。事务执行过程中发生错误,会回滚已有操作并恢复到事务开始前的状态。
2、一致性(Consistency): 事务开始前和结束后,数据库的完整性没有被破坏。比如:A向B转账1000元,A的账户中会减少1000元,而B的账户中会增加1000元。
3、隔离性(Isolation): 多个事务并发执行时,同一时间只允许一个事务请求同一数据,不同的事务之前不会互相干扰。如:A在从一张银行卡取款的过程中,其他人不能向这张银行卡转账。
4、持久性(Durability): 事务完成之后,事务对数据库的所有更改应该保存在数据库中,不能回滚。

二、事务并发的三大问题

1、脏读: 一个事务读取到了另一个事务未提交的数据。比如:事务A读取了事务B更新但尚未提交的数据,B提交失败发生回滚操作,那么A读取的数据是脏数据。
2、不可重复读: 一个事务多次读取同一数据,另一事务在其读取过程中对该数据进行了修改(update操作)并提交,导致这个事务前后读取的数据结果不一致。
3、幻读: 一个事务多次读取同一数据,另一事务在其读取过程中对该数据进行了插入或删除(insert操作)并提交,导致这个事务前后读取的数据结果不一致。

三、事务隔离级别及实现原理

事务隔离是通过加锁来实现的,锁的竞争会带来性能的损失。事务隔离级别分为以下四种:
1、读未提交(READ UNCOMMITTED): 不加锁,性能最好,但是无法解决脏读、不可重复读、幻读问题;
实现:不加锁,可看作无隔离。
2、读提交(READ COMMITTED): 一个事务只能读取其它事务已经提交的数据,但不能解决不可重复读、幻读问题;
实现:事务每次操作数据时都会重新生成一次快照,来记录当前数据的版本,在快照时间之前提交的数据版本则可以被读到。(MVCC)
3、可重复读(REPEATABLE READ): 一个事务在开始后直到提交前的任意时刻读取的数据都是一样的,不会读到其它事务对已有数据的修改,但可以读取其它事务插入的新数据,即无法解决幻读问题。(mysql中默认的隔离级别,MVCC)
实现:事务开始时生成一个当前事务全局性的快照,后面每次读取的数据都是该次快照的数据版本。
4、串行化(SERIALIZABLE): 隔离效果就好,可以解决脏读、不可重复读、幻读问题,但需要加锁,性能较差。
实现:一个事务读的时候会加共享锁,其他事务可以并发读,但不能写;该事务写的时候加排它锁,其他事务不能写也不能读。
在这里插入图片描述
参考链接:https://blog.csdn.net/weixin_40172337/article/details/114218800

MVCC(多版本并发控制)实现机制

MVCC是一种多版本并发控制机制,通过保存数据在某个时间点的快照来实现的。不同的存储引擎的MVCC实现是不同的,典型的有乐观(Optimistic)并发控制和悲观(pessimistic)并发控制。

InnoDB的MVCC,是通过在每行记录后面保存两个隐藏的列来实现的。这两个列,一个保存了行的创建时间(创建版本号),一个保存行的删除时间(删除版本号)。每开始一个新的事务,系统版本号都会自动递增。事务开始时刻的系统版本号会作为事务版本号,用来和查询到的每行记录的版本号进行比较。保存这两个额外的系统版本号,使大多数读操作都可以不用加锁。这样设计使得读数据操作简单,性能好。不足之处就是每行记录都需要额外的存储空间,需要更多的行检查和维护工作。
在READ COMMITTED隔离级别下,一个事务多次输入SELECT查找语句时,InnoDB每次查询时都会生成一个快照,记录当前已提交的数据版本,在这之前的数据版本都可以被读取到。
在REPEATABLE READ隔离级别下,一个事务多次输入SELECT查找语句时,InnoDB只在事务开始时生成一个当前事务全局性的快照,每次查找都是读取早于当前事务版本的数据行。

MySQL数据库性能优化的方法

①硬件优化。提升服务器的硬件配置,如CPU、内存大小等。
②数据库调优,如增加索引。
③引入缓存,减小数据库压力。
④读写分离。增加从库,抗住更多的读请求。
⑤分库分表。单表数据超千万时,考虑分库分表。

MySQL主从复制,读写分离

一、为什么要主从复制

1、高可用性: 若主库发生故障,可快速切换到其中一个从库,从而保证系统业务的可用性。
2、负载均衡: 主库用于写数据,各个从库用于读数据,实现读写分离,将流量分布到各个库上,从而实现负载均衡。
3、可扩展性好: 当业务量很大的时候,为了抗住更多的读请求,可以增加从库,从而分担流量。

二、主从复制的原理

MySQL主从复制是一个异步的复制过程,主库发送更新事件到从库,从库读取更新记录,并执行更新记录,使得从库的内容与主库保持一致。
在这里插入图片描述主从复制的流程为:
①当主库进行insert、update、delete操作时,会按顺序写入到binlog(二进制日志)中;
②从库启动I/O线程,跟主库建立客户端连接;
③主库启动binlog dump线程,读取主库上binlog的内容发送给从库的I/O线程;
④从库的I/O线程接收到 binlog 内容后,将内容写入到本地的 relay log(中继日志);
⑤从库启动SQL线程,读取relay log的内容,并完成对从库数据的更新。

上图为一个从库的流程,实际中,有N个从库,主库就会对应有N个binlog dump线程,而每个从库都会有自己的I/O线程和SQL线程。

参考文章:MySQL主从复制原理

MySQL分库分表

一、为什么要分库分表

MySQL单表最多能存储5000w数据,但是单表数据表达1000w以后,即使添加从库、优化索引,查询的性能依旧很差。这时候就需要通过分库分表,从而有效减小单台数据库的压力。

二、数据表的两种拆分方式

1、垂直拆分

数据表列的拆分,把一张列比较多的表拆分为多张表,如:把主键和常用的列放一张表,把主键和不常用的列放另一张表。如下图所示:
在这里插入图片描述
垂直拆分还有一种理解,即从业务的角度进行拆分,如:一个数据中既存在用户表,又存在订单表,那么就可以把用户表存在用户库,订单表存在订单库中。如下图所示:
在这里插入图片描述
优点:使每条数据变小,一个数据块block可以存储更多数据,查询时可减小I/O次数;
缺点:①主键出现冗余,需要管理冗余列,查询所有数据时需要关联查询JOIN操作;
②依旧会出现单表数据量过大的情况。
应用场景:数据表中某些列常用,而某些列不常用的情况。

2、水平拆分

数据表行的拆分,数据数量超过千万级别时,数据表的查询效率就会很慢,就可以把一张表的数据按行拆分成多个表来存放。如下图所示:
在这里插入图片描述
优点:不存在单表大数据造成的性能瓶颈;
缺点:逻辑复杂,通常查询时需要多个表名;
应用场景:单表数据量达百万级别甚至千万级别。

上图所示为库内分表,仅仅单纯的解决了单一表数据过大的问题,而没有把表的数据分布到不同的机器上,因此对于减轻MySQL服务器的压力来说,并没有太大的作用,大家还是竞争同一个物理机上的IO、CPU、网络,这个就要通过分库来解决,即分库分表

三、数据表水平拆分的两种方案

水平分表最主要的就是路由算法,即把路由的key按照指定的算法进行路由存放。常用的水平分表方案有两种:range范围路由、hash路由。

1、range范围路由:按照数据范围进行拆分数据在这里插入图片描述

range方案比较简单,就是把一定范围内的订单,存放到一个表中;如上图id=12放到0表中,id=1300万的放到1表中。设计这个方案时就是前期把表的范围设计好。通过id进行路由存放。

优点:数据扩容方便,不需要数据迁移;
缺点:有热点问题,由于id的值一般递增的,某段时间的数据会集中在某一张表中,就会导致该表压力过大,而其它表没有压力。
(热点问题是指某段时间对数据的操作集中在一个表中,而其他表的操作很少。)

2、hash路由:指定路由key对分表总数进行取模

在设计系统之前,假设未来几年的订单量为4000万。每张表我们可以容纳1000万,也我们可以设计4张表进行存储。
在这里插入图片描述
hash路由的具体方法为:对指定的路由key(如:id)对分表总数进行取模,上图中,id=12的订单,对4进行取模,也就是会得到0,那此订单会放到0表中。id=13的订单,取模得到为1,就会放到1表中。为什么对4取模,是因为分表总数是4。

优点:数据可以均匀的放到每张表中,对数据进行操作时,就不会有热点问题。
缺点:若数据量继续增大,需要增加分表数,数据的迁移和扩容,很会麻烦。

四、分库分表方案

上述的两种水平分表方案中,hash可以解决数据均匀问题,range可以解决数据迁移问题,因此可以将两者结合在一起,实现分库分表的方案。

实现思路为:先用range路由方案让数据落地到一个范围内,这样需要扩容时以前的数据不需要迁移;再在这个范围内,使用hash路由方案让数据均匀分配在几个表中,这样就解决了数据热点问题,保证每个表压力一样;最后把这些表分配到几台数据库机器上,实现分库。以上就实现了分库分表

具体实现,我们一起看一个例子:
在这里插入图片描述
假设数据量为4000万,定义一个Group01组,组内有三个DB库,DB_0中有4张表,DB_1中有3张表,DB_2中有3张表。每张表内存储的路由key(id)的范围如上图所示。这里假设DB_0的服务器性能更好,所以存储4张表,从而可以存储更多的数据。

存储路由key的具体流程为:
在这里插入图片描述
扩容的时候,只需要新增加一个group02组,而不需要迁移之前的数据。
在这里插入图片描述
实际设计的时候,我们只需要维护group、db、table的对应关系,就可以将数据存储在对应的表中。如下图所示,图中table表字段有些小错误,仅做示例。
在这里插入图片描述在这里插入图片描述
实际开发的时候,这三张表可以保存在缓存,而不是MySQL中。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值