基于飞桨实现房价预测模型

该部分笔记参考课程:https://aistudio.baidu.com/aistudio/projectdetail/717724

加载飞桨、numpy相关类库

#加载飞桨、numpy相关类库
import paddle
import numpy as np
import paddle.fluid as fluid
#飞桨主库:fluid
import paddle.fluid.dygraph as dygraph
#dygraph动态图类库
#静态图模式(声明式编程范式,类比C++):先编译后执行;性能更好便于部署
#动态图模式(命令式编程范式,类比Python):解析式执行方式;更方便调试
from paddle.fluid.dygraph import Linear
#Linear 为神经网络的全连接层函数
#即对所有输入进行权重相加并包含激活函数的基本神经元结构
import os
'''
os模块是python与操作系统交互的主要模块
os模块可以弥补操作系统之间差异带来的编程方面的不同
工作中使用的主要场景就是在文件路径描述
windows和linux 之间文件路径的不同.
https://www.jianshu.com/p/ed0774f82816
'''
import random

数据处理

#**************** 数据处理 ************
def load_data():
    #从文件中导入数据
    datafile = './work/housing.data'
    data = np.fromfile(datafile, sep = ' ')
    '''
    fromfile()函数读回数据时需要用户指定元素类型
    并对数组的形状进行适当的修改
    fromfile(dataname, dtype = np.float, count = -1, sep = ' ')
    http://doc.codingdict.com/NumPy_v111/reference/generated/numpy.fromfile.html
    https://blog.csdn.net/kebu12345678/article/details/54837245
    '''
    feature_names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', \
                      'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']
    feature_num = len(feature_names)
    #此时数据为一维列向量
    #将原始数据Reshape,变成[N,14]的形状
    data = data.reshape(data.shape[0]//feature_num, feature_num)

    # 将原数据集拆分成训练集和测试集
    # 这里使用80%的数据做训练,20%的数据做测试
    # 测试集和训练集必须是没有交集的
    ratio = 0.8
    offset = int(data.shape[0] * ratio)
    training_data = data[:offset]
    #计算train数据集的最大值,最小值,平均值
    maximums, minimums, avgs = training_data.max(axis = 0), training_data.min(axis = 0), \
                                training_data.sum(axis = 0)/training_data.shape[0]
    #记录数据的归一化参数,在预测时对数据做归一化
    global max_values
    global min_values
    global avgs_values
    max_values = maximums
    min_values = minimums
    avgs_values = avgs
    #对数据进行归一化处理
    for i in range(feature_num):
        data[:, i] = (data[:, i] - avgs_values[i]) / (max_values[i] - min_values[i])
        #测试集与训练集采用相同的标准进行归一化
    training_data = data[:offset]
    test_data = data[offset:]
    return training_data, test_data

模型设计

#**************** 模型设计 ************
'''
模型定义的实质是定义线性回归的网络结构
通过创建Python类的方式完成模型网络的定义
即定义init函数和forward函数
在forward函数中使用的网络层需要在init函数中声明
'''
#定义init函数:在类的初始化函数中声明每一层网络的实现函数
class Regressor(fluid.dygraph.Layer):
    def __init__(self):
        super(Regressor, self).__init__()
        # 定义一层全连接层,输出维度是1,激活函数为None,即不使用激活函数
        self.fc = Linear(input_dim = 13, output_dim = 1, act = None)
    # 网络的前向计算函数
    #定义forward函数:构建神经网络结构,实现前向计算过程
    def forward(self, inputs):
        x = self.fc(inputs)
        return x

训练配置

图1 训练配置过程

 

  1. 以guard函数指定运行训练的机器资源,表明在with作用域下的程序均执行在本机的CPU资源上。dygraph.guard表示在with作用域下的程序会以飞桨动态图的模式执行(实时执行)。
  2.  声明定义好的回归模型Regressor实例,并将模型的状态设置为训练。
  3. 使用load_data函数加载训练数据和测试数据。
  4. 设置优化算法和学习率,优化算法采用随机梯度下降SGD,学习率设置为0.01。
#**************** 训练配置 ************
#定义飞桨动态图的工作环境
with fluid.dygraph.guard():
    #声明定义的回归模型
    model = Regressor()
    #开启训练模式
    model.train()
    #加载数据
    training_data, test_data = load_data()
    # 定义优化算法,这里使用随机梯度下降-SGD
    # 学习率设置为0.01
    opt = fluid.optimizer.SGD(learning_rate = 0.01, parameter_list = model.parameters())

说明:

  1. 默认本案例运行在读者的笔记本上,因此模型训练的机器资源为CPU。
  2. 模型实例有两种状态:训练状态.train()和预测状态.eval()。训练时要执行正向计算和反向传播梯度两个过程,而预测时只需要执行正向计算。为模型指定运行状态,有两点原因:

(1)部分高级的算子(例如Drop out和Batch Normalization)在两个状态执行的逻辑不同。

(2)从性能和存储空间的考虑,预测状态时更节省内存,性能更好。

  • 在上述代码中可以发现声明模型、定义优化器等操作都在with创建的 fluid.dygraph.guard()上下文环境中进行,可以理解为with fluid.dygraph.guard()创建了飞桨动态图的工作环境,在该环境下完成模型声明、数据转换及模型训练等操作。
  • 使用飞桨框架只需要定义SGD就可以实现优化器设置,大大简化了随机梯度下降法的编写过程。

训练过程

  1. 内层循环:采用分批的方式将整个数据集遍历一次;batch的取值会影响模型训练效果。batch过大,会增大内存消耗和计算时间,且效果并不会明显提升;batch过小,每个batch的样本数据将没有统计意义。
  2. 外层循环: 定义遍历数据集的次数,通过参数EPOCH_NUM设置
  3. 内层循环需执行以下四个步骤:
图2 内循环计算过程
  • 数据准备:将数据转变成np.array和内置格式
  • 前向计算:将一个批次的样本数据灌入网络中,计算输出结果。
  • 计算损失函数:以前向计算结果和真实房价作为输入,通过损失函数square_error_cost计算出损失函数值(Loss)。
  • 反向传播:执行梯度反向传播backward函数,即从后到前逐层计算每一层的梯度,并根据设置的优化算法更新参数opt.minimize
#**************** 训练过程 ************
#定义工作环境
with dygraph.guard(fluid.CPUPlace()):
    #定义批大小及训练次数
    EPOCH_NUM = 10
    BATCH_SIZE = 10
    
    #定义外层循环
    for epoch_id in range(EPOCH_NUM):
        #在每轮迭代开始之前,将训练数据的顺序随机的打乱
        np.random.shuffle(training_data)
        #将训练数据进行拆分,每个batch包含10条数据(数据集较小)
        mini_batches = [training_data[k:k+BATCH_SIZE] for k in range(0, len(training_data), BATCH_SIZE)]
        #定义内层循环
        for iter_id, mini_batch in enumerate(mini_batches):
            x = np.array(mini_batch[:,:-1]).astype('float32')
            #获得当前批次训练数据
            y = np.array(mini_batch[:,-1:]).astype('float32')
            #获得当前批次训练标签(真实房价)
            #将numpy数据转化成飞桨动态图variable形式
            house_features = dygraph.to_variable(x)
            prices = dygraph.to_variable(y)

            #前向计算
            predicts = model(house_features)
            #计算损失
            loss = fluid.layers.square_error_cost(predicts, label = prices)
            avg_loss = fluid.layers.mean(loss)
            if iter_id % 20 == 0:
                #每200个数据输出一次
                print("epoch: {}, iter: {}, loss is:{}".format(epoch_id, iter_id, avg_loss.numpy()))
            #反向传播
            avg_loss.backward()
            #最小化loss更新参数
            opt.minimize(avg_loss)
            #清除梯度
            model.clear_gradients()
    #保存模型
    fluid.save_dygraph(model.state_dict(), 'LR_model')

保存和测试模型

 #*********** 测试模型 ************
 #现实应用场景中模型的训练和测试往往是分开的
 '''
 配置模型预测的机器资源。本案例默认使用本机,因此无需写代码指定。
 将训练好的模型参数加载到模型实例中。
    从文件中读取模型参数;将参数内容加载到模型。
    加载完毕后,需要将模型的状态调整为eval()(校验)。
    校验和预测状态的模型只需要支持前向计算,模型的实现更加简单,性能更好。
 将待预测的样本特征输入到模型中,打印输出的预测结果。
 '''
#定义函数实现从数据集中抽取一条样本作为测试样本
def load_one_example(data_dir):
    f = open(data_dir, 'r')
    datas = f.readlines()
    #readlines()从文件中一行一行地读数据(包括换行符),返回一个列表
    #选择倒数第十条数据用于测试
    tmp = datas[-10]
    tmp = tmp.strip().split()
    #strip()删除字符序列,默认删除空白符
    #split()通过指定分隔符对字符串进行切片,并返回分割后的字符串列表(list)
    one_data = [float(v) for v in tmp]

    #对数据进行归一化处理
    for i in range(len(one_data)-1):
        one_data[i] = (one_data[i] - avgs_values[i]) / (max_values[i] - min_values[i])
    data = np.reshape(np.array(one_data[:-1]), [1,-1]).astype(np.float32)
    label = one_data[-1]
    return data, label

with dygraph.guard():
    #参数为保存模型参数的文件地址
    model_dict, _ = fluid.load_dygraph('LR_model')
    model.load_dict(model_dict)
    model.eval()

    #参数为数据集的文件地址
    test_data, label = load_one_example('./work/housing.data')
    #此处为什么不直接使用之前划分好的测试集的数据?
    #将数据转化为动态图的variable格式
    test_data = dygraph.to_variable(test_data)
    results = model(test_data)
    #对结果做反归一化处理
    results = results * (max_values[-1] - min_values[-1]) + avgs_values[-1]
    print("Inference result is {}, the corresponding label is{}".format(results.numpy(), label))

通过比较“模型预测值”和“真实房价”可见,模型的预测效果与真实房价接近。房价预测仅是一个最简单的模型,使用飞桨编写均可事半功倍。那么对于工业实践中更复杂的模型,使用飞桨节约的成本是不可估量的。同时飞桨针对很多应用场景和机器资源做了性能优化,在功能和性能上远强于自行编写的模型。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
基于飞桨平台,我们可以使用深度学习模型实现ichallenge-pm数据集上的眼疾识别分类任务。首先,我们需要对数据集进行预处理和数据增强操作。 使用飞桨提供的数据处理工具,我们可以加载数据集并进行切分,将数据集划分为训练集和测试集。接着,我们可以对训练集进行数据增强,如随机旋转、平移、缩放和翻转等操作,以增加模型的泛化能力。 之后,我们可以选择合适的深度学习模型来进行眼疾识别分类。飞桨平台提供了多个经典的深度学习模型,如ResNet、MobileNet等,我们可以根据问题的需求选择适合的模型。 在模型训练过程中,我们可以使用飞桨提供的训练工具,设置合适的超参数,并通过迭代优化模型。可以通过调整学习率、优化器、损失函数等来提高模型的准确率和性能。 训练完成后,我们可以使用测试集来评估模型的性能,并得出模型在眼疾识别分类任务上的准确率、召回率等指标。可以根据评估结果对模型进行改进和调优。 最后,我们可以将训练好的模型部署到生产环境中,对新的眼疾图像进行分类。飞桨平台提供了模型的部署工具,可以将模型转换成可部署的格式,并提供了预测服务。 通过以上步骤,我们可以基于飞桨平台实现ichallenge-pm数据集上的眼疾识别分类,从而对眼疾进行快速准确的分类和识别。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值