八个常见排序算法原理解释和代码
#include "sort.h"
//冒泡排序
/*冒泡排序的原理是相邻两个元素比较,将较大的移到后面,以此类推到整个数组,
每次遍历只需要遍历未排序内容即可。时间复杂度O(n^2),空间复杂度O(1),稳定*/
void Sort::BubbleSort(vector<int>& arr)
{
for (int i = arr.size() - 1; i > 0; i--)
{
for (int j = 0; j < i; j++)
{
if (arr[j] > arr[j + 1])
swap(arr[j], arr[j + 1]);
}
}
}
//选择排序
/*选择排序的原理:第一次遍历选择一个最小的放在左边,
第二次遍历在剩下的元素中选择最小的一个放在左边以此类推,时间复杂度O(n^2),空间复杂度O(1),不稳定*/
void Sort::SelectionSort(vector<int>& arr)
{
for (int i = 0; i < arr.size() - 1; i++)
{
int minindex = i;
for (int j = i; j < arr.size() - 1; j++)
{
if (arr[minindex] > arr[j + 1])
minindex = j + 1;
}
if(minindex != i)
swap(arr[i], arr[minindex]);
}
}
//插入排序
/*插入排序原理:将无序序列里面的元素插入到有序序列里面,一般将数组的第一个元素作为一个有序序列,
然后剩下的作为无序序列,从无序序列中选出第一个元素和有序序列中的元素比较,插入到合适的位置
时间复杂度O(n^2),空间复杂度O(1),稳定*/
void Sort::InsertSort(vector<int>& arr)
{
for (int i = 1; i < arr.size(); i++)
{
int key = arr[i],j;
for (j = i - 1; j >= 0 && key < arr[j]; j--)
arr[j+1] = arr[j];
arr[j + 1] = key;
}
}
//二分插入排序
/*二分插入排序原理:其是插入排序的变种,在查找有序序列时采用二分法查找,
时间复杂度O(n^2),空间复杂度O(1),稳定*/
void Sort::InsertSort2(vector<int>& arr)
{
for (int i = 1; i < arr.size(); i++)
{
int key = arr[i], j;
int L=0,R=i-1;
while (L <= R)
{
int mid = L + (R - L) / 2;
if (arr[mid] > key)
R = mid - 1;
else
L = mid + 1;
}
for (j = i - 1; j >= L ; j--)
arr[j + 1] = arr[j];
arr[j + 1] = key;
}
}
//希尔排序
/*希尔排序原理:将数组分为若干子序列分别进行插入排序,子序列都有序时,进行整体得插入排序
时间复杂度最坏O(n^2),空间复杂度O(1),稳定*/
void Sort::ShellSort(vector<int>& arr)
{
int len = arr.size();
int increasement = len;
do {
increasement = increasement / 3 + 1;
for (int i = 0; i < len; i++)
{
for (int j = i + increasement; j < len; j += increasement)
{
int key = arr[j],s;
for (s = j - increasement; s >= 0 && key < arr[s]; s -= increasement)
{
arr[s + increasement] = arr[s];
}
arr[s + increasement] = key;
}
}
} while (increasement > 1);
}
//快速排序
/*快速排序原理:在序列中选出一个基准值,一般选第一个,然后将大于基准值得元素全都放到基准值右边,
小于的放在左边,时间复杂度最优O(nlogn)最坏O(n^2),空间复杂度O(logn),稳定*/
void Sort::quickSort(vector<int>& arr, int start,int end)
{
if (start >= end)
return;
int base = arr[start];
int L = start, R = end;
while (L<R)
{
while (L<R && arr[R]>=base)
{
R--;
}
if (L < R)
{
arr[L] = arr[R];
L++;
}
while (L<R && arr[L]<base)
{
L++;
}
if (L < R)
{
arr[R] = arr[L];
R--;
}
}
arr[L] = base;
quickSort(arr, start, L-1);
quickSort(arr, L+1, end);
}
//归并排序
/*归并排序原理:将一个n序列可以看成n个子序列,然后两两归并,归并的时候把小的元素放到前面,得到多个有序序列,在继续归并排序,
直到达到n个,时间复杂度O(nlogn),空间复杂度O(n),稳定*/
void Sort::merge(vector<int>& arr, int start,int mid, int end)
{
vector<int>temp(end - start + 1);
int i = start,k=0;
int j = mid+1;
while (i <= mid && j <= end)
{
if (arr[i] < arr[j])
temp[k++] = arr[i++];
else
temp[k++] = arr[j++];
}
while (i <= mid)
{
temp[k++] = arr[i++];
}
while (j <= end)
{
temp[k++] = arr[j++];
}
for (int p = 0; p < k; p++)
{
arr[start + p] = temp[p];
}
}
void Sort::mergeSort(vector<int>& arr, int start, int end)
{
if (start >= end)
return;
int mid = start + (end - start) / 2;
mergeSort(arr, start, mid);
mergeSort(arr, mid+1, end);
merge(arr, start, mid, end);
}
//堆排序
/*堆排序原理:将序列看成一个二叉树,然后将待排序列看成一个大顶堆(小顶堆:从大到小),大顶堆表示结点上的值比左
右子树的值都大,最大的值是根节点,排好以后将堆顶元素和末尾元素交换,剩下的元素重新构造大顶堆,反复执行
时间复杂度O(nlogn),空间复杂度O(1),不稳定*/
void Sort::Heapadjust(vector<int>& arr, int start, int end)
{
int dad = start;
int son = dad * 2 + 1;
while (son <= end)
{
if (son + 1 <= end && arr[son] < arr[son + 1])
son++;
if (arr[dad] > arr[son])
return;
else
{
swap(arr[son], arr[dad]);
dad = son;
son = dad * 2 + 1;
}
}
}
void Sort::HeapSort(vector<int>& arr)
{
int len = arr.size(),i,j;
for (i = len / 2 - 1; i >= 0; i--)//从第一个非叶子节点开始
{
Heapadjust(arr, i, len-1);
}
for (i = len - 1; i >0; i--)
{
swap(arr[i], arr[0]);
Heapadjust(arr, 0, i-1);
}
}