神经网络的进化
文章平均质量分 53
NAND_LU
~
展开
-
Transformer论文学习
*提出了一种新的简单的网络架构,Transformer,完全基于注意力机制,完全取消了递归和卷积。*具有更强的并行性,并且需要的训练时间明显更少。模型架构Transformer遵循 encoder-decode结构Encoder-DecoderEncoder包括:多头注意力机制->add残差结构-> layer normalization->Feed Forward network->add残...原创 2022-05-19 22:12:49 · 564 阅读 · 0 评论 -
基于PyTorch实现 Inception-ResNet-v2
基于PyTorch实现 Inception-ResNet-V21、论文地址Inception-ResNet and the Impact of Residual Connections on Learning2 、网络框架本文github链接Stem1.框架图2.代码实现因为要经常用,所以先定义一个3x3卷积,1x1卷积class conv3x3(nn.Module): def __init__(self, in_planes, out_channels, stride=1,原创 2022-04-27 22:18:25 · 2277 阅读 · 3 评论 -
基于PyTorch实现 Inception-ResNet-v1
基于PyTorch实现 Inception-ResNet-V11、论文地址Inception-ResNet and the Impact of Residual Connections on Learning2 、网络框架本文github链接Stem1.框架图2.代码实现因为要经常用,所以先定义一个3x3卷积,1x1卷积class conv3x3(nn.Module): def __init__(self, in_planes, out_channels, stride=1,原创 2022-04-26 21:59:37 · 2075 阅读 · 0 评论 -
曲线拟合--动图版
曲线拟合–动图版在jupyter notebook上无法显示动图网络存在梯度爆炸的可能,可以通过调节学习率,或者多运行几次避免不好的结果(知道曲线拟合为止),为了防止结果重复,就不固定随机种子了。import torchfrom torch import nn, optimfrom torch.autograd import Variableimport numpy as npimport matplotlib.pyplot as pltimport osimport torch.nn原创 2022-04-21 10:21:51 · 505 阅读 · 0 评论 -
线性网络拟合--动图版
线性网络拟合–动图版在jupyter notebook上无法显示动图import torchfrom torch import nn, optimfrom torch.autograd import Variableimport numpy as npimport matplotlib.pyplot as pltimport osimport itertoolsimport randomos.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"# 定义线性模原创 2022-04-20 19:37:08 · 1097 阅读 · 0 评论