基于pytorch的 wandb使用

一、什么是wandb

wandb是一个云数据记录追踪工具
https://wandb.ai

二、 使用步骤

1、登录网站,创建自己的账户(可使用GitHub账号登陆)
2、创建一个项目
在这里插入图片描述
3、输入项目名称
在这里插入图片描述
4、安装函数包

pip install wandb

5、在训练程序中引入函数包

import wandbl

参考train_wandb.py
6、加入超参数

wandb.config = {
  "learning_rate": 0.001,
  "epochs": 100,
  "batch_size": 128
}#字典形式加入任意你需要的超参数

7、添加需要观察的变量

wandb.log({"loss": loss})

# Optional
wandb.watch(model)

8、运行程序

conda activate your-enviroment#激活你的虚拟环境
wandb login your-key#复制下面的那一串数字
python train_wandbl.py

在这里插入图片描述

9、观察结果
运行后会在命令行给出网址,复制到浏览器即可打开
运行后
在这里插入图片描述
生成的表格横坐标默认是Step,如果想更改为Epoch
wandb.log({“loss”: loss,“epoch”: epoch,})
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
如此即可。
可以在这里更改线段的名称
在这里插入图片描述

10、生成报告

图片可以通过右上角的生成报告生成
在这里插入图片描述

### 如何在 Ultralytics 中集成和使用 Wandb 进行实验训练跟踪 #### 配置环境并安装依赖库 为了能够在 Ultralytics 的项目中利用 Wandb 跟踪实验,首先需要确保环境中已经安装了必要的 Python 库。这通常意味着要安装 `ultralytics` 和 `wandb`。 ```bash pip install ultralytics wandb ``` #### 初始化 Wandb 并配置超参数 当准备开始一个新的实验时,在启动训练之前应该调用 `wandb.init()` 函数来初始化一个新运行实例,并设置一些基本属性如项目名称、实体名以及任何想要记录下来的初始配置项或超参数[^1]。 ```python import wandb # 启动新的Wandb会话 run = wandb.init(project="my_project", entity="your_entity_name") config = run.config # 获取当前的配置对象 config.batch_size = 64 # 设置批量大小作为超参之一 config.learning_rate = 0.001 # 学习率也作为一个重要的超参被设定下来 ``` #### 修改 Ultralytics 训练脚本以支持 Wandb 日志记录 为了让 Ultralytics 可以向 Wandb 发送日志数据,可能需要修改默认的训练循环逻辑以便定期上传损失值和其他感兴趣的统计量给 Wandb 实现可视化目的[^2]。 对于基于 PyTorch Lightning 构建的应用程序来说,可以考虑创建自定义回调类继承自 `pl.Callback` 来处理这些额外的日志需求;而对于更传统的 PyTorch 或其他框架,则可以直接在训练过程中适当位置加入如下所示的日志语句: ```python from ultralytics import YOLO model = YOOL() # 假设这是你的YOLO模型加载方式 for epoch in range(num_epochs): ... # 将每轮次结束后的性能度量发送到Wandb wandb.log({ "epoch": epoch, "train_loss": train_loss, "val_accuracy": val_acc }) ``` #### 查看与分析结果 一旦完成了上述步骤并且成功执行了一次完整的训练过程之后,就可以通过访问 https://app.wandb.ai/ 上对应的页面查看整个实验期间产生的所有历史记录及其变化趋势图表了。这里不仅能够直观地看到不同版本之间各项关键指标的表现差异,还可以方便地与其他团队成员分享链接共同探讨优化方向等问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NAND_LU

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值