ABC 273 D - LRUD Instructions

D-LRUD Instructions

#include <bits/stdc++.h>
#define ll long long
using namespace std;
map<ll, vector<ll>> hh, ww;
ll h, w, rs, cs, r, s, l;
int n, q;
char x;
int main()
{
    cin >> h >> w >> rs >> cs;
    cin >> n;
    for (int i = 1; i <= n; i++)
    {
        cin >> r >> s;
        hh[r].push_back(s);
        ww[s].push_back(r);
    }
    for (auto &p : hh)p.second.push_back(0),p.second.push_back(w+1);
    for (auto &p : ww)p.second.push_back(0),p.second.push_back(h+1);
    for (auto &p : hh)
        sort(p.second.begin(), p.second.end());
    for (auto &p : ww)
        sort(p.second.begin(), p.second.end());
    cin >> q;
    for (int i = 1; i <= q; i++)
    {
        cin >> x >> l;
        if (x == 'U')
        {
            auto itt = ww.find(cs);
            if (itt != ww.end())
            {
                auto it = lower_bound(ww[cs].begin(), ww[cs].end(),rs);
                if (*it>rs)
                {
                    it--;
                    rs=max(rs-l,*it+1);
                }
                else
                    rs = max((ll)1, rs - l);
            }
            else
                rs = max((ll)1, rs - l);
        }
        if (x == 'D')
        {
            auto itt = ww.find(cs);
            if (itt != ww.end())
            {
                auto it = lower_bound(ww[cs].begin(), ww[cs].end(), rs);
                if (*it > rs && (*it <= min(rs + l, h)))
                {
                    rs = *it - 1;
                }
                else
                    rs = min(rs + l, h);
            }
            else
                rs = min(rs + l, h);
        }
        if (x == 'L')
        {
            auto itt = hh.find(rs);
            if (itt != hh.end())
            {
                auto it = lower_bound(hh[rs].begin(), hh[rs].end(),cs);
                if (*it > cs )
                {
                    it--;
                    cs=max(cs-l,*it+1);
                    
                }
                else
                    cs = max((ll)1, cs - l);
            }
            else
                cs = max((ll)1, cs - l);
        }
        if (x == 'R')
        {
            auto itt = hh.find(rs);
            if (itt != hh.end())
            {
                auto it = lower_bound(hh[rs].begin(), hh[rs].end(), cs);
                if (*it > cs && (*it <= min(w, cs + l)))
                {
                    cs = *it - 1;
                }
                else
                    cs = min(w, cs + l);
            }
            else
                cs = min(w, cs + l);
        }
        cout << rs << " " << cs << endl;
    }
    system("pause");
    return 0;
}

八数码问题是一个经典的搜索问题,可以使用广度优先搜索(BFS)或A*算法来解决。以下是一个使用BFS解决八数码问题的C++代码示例: ```c++ #include <bits/stdc++.h> using namespace std; const int N = 3; const int M = 362880; // 9! const int dx[] = {0, 0, -1, 1}; const int dy[] = {-1, 1, 0, 0}; struct Node { int puzzle[N][N]; int x, y; int dist; int path[M]; int id() const { int res = 0, mul = 1; for (int i = 0; i < N * N; ++i) { int cnt = 0; for (int j = i + 1; j < N * N; ++j) { cnt += puzzle[j / N][j % N] < puzzle[i / N][i % N]; } res += mul * cnt; mul *= N * N - i; } return res; } bool operator<(const Node& other) const { return dist + id() > other.dist + other.id(); } }; Node st, ed; int fact[N * N], dist[M]; int bfs() { memset(dist, -1, sizeof(dist)); queue<Node> q; st.dist = 0; q.push(st); while (!q.empty()) { Node t = q.front(); q.pop(); if (t.id() == ed.id()) { memcpy(ed.path, t.path, sizeof(int) * t.dist); return t.dist; } for (int i = 0; i < 4; ++i) { int nx = t.x + dx[i], ny = t.y + dy[i]; if (nx < 0 || nx >= N || ny < 0 || ny >= N) continue; Node u = t; swap(u.puzzle[nx][ny], u.puzzle[t.x][t.y]); u.x = nx, u.y = ny; u.dist = t.dist + 1; if (dist[u.id()] == -1) { dist[u.id()] = u.dist; u.path[u.dist] = i; q.push(u); } } } return -1; } int main() { fact[0] = 1; for (int i = 1; i < N * N; ++i) fact[i] = fact[i - 1] * i; for (int i = 0; i < N; ++i) { for (int j = 0; j < N; ++j) { scanf("%d", &st.puzzle[i][j]); if (st.puzzle[i][j] == 0) { st.x = i, st.y = j; } } } for (int i = 0; i < N; ++i) { for (int j = 0; j < N; ++j) { scanf("%d", &ed.puzzle[i][j]); if (ed.puzzle[i][j] == 0) { ed.x = i, ed.y = j; } } } int cnt = bfs(); if (cnt == -1) { puts("impossible"); } else { for (int i = 0; i < cnt; ++i) { printf("%c", "lrud"[ed.path[i]]); } puts(""); } return 0; } ``` 这段代码中使用了结构体`Node`来表示状态节点,其中`puzzle[N][N]`表示八数码矩阵,`x`和`y`表示空格的位置,`dist`表示到起点的距离,`path[M]`表示路径。`id`函数用于计算状态的哈希值。运行时间为$O(N^2 \cdot N!)$。 需要注意的是,这段代码中使用了`bits/stdc++.h`头文件,这个头文件只在一些特定的编译器上才可以使用,如果无法使用该头文件,可以将其替换为具体需要的头文件。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值