ubuntu下使用d2lzh_pytorch包

写在前面:在阅读动手学深度学习pytorch时,发现里面使用了一个叫做d2lzh_pytorch的包,当时尝试了各种各样的方法总是会出一些问题,现记录我自己的解决方法。

1、先下载d2lzh_pytoch包

传送门:d2lzh_pytorch.zip
我使用的是pycharm,然后我直接把该包拖入到同一个pycharm文件夹下即可成功使用
在这里插入图片描述
(ps:我试过在pycharm里面直接下载,但是它只有d2lzh包,而不是d2lzh_pytorch包,而且导入后也会有各种各样的问题。。)

2、下载tqdm

pip install tqdm  -i https://pypi.tuna.tsinghua.edu.cn/simple

在这里插入图片描述

3、下载torchtext

pip install -i https://pypi.doubanio.com/simple/ torchtext

在这里插入图片描述

4、复现ALEXNET

代码如下:

import torch
import time
from torch import nn, optim
import torchvision

import sys
# sys.path.append("..")
import d2lzh_pytorch as d2l
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

class AlexNet(nn.Module):
    def __init__(self):
        super(AlexNet, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(1, 96, 11, 4),
            nn.ReLU(),
            nn.MaxPool2d(3, 2),
            nn.Conv2d(96, 256, 5, 1, 2),
            nn.ReLU(),
            nn.MaxPool2d(3, 2),
            nn.Conv2d(256, 384, 3, 1, 1),
            nn.ReLU(),
            nn.Conv2d(384, 384, 3, 1, 1),
            nn.ReLU(),
            nn.Conv2d(384, 256, 3, 1, 1),
            nn.ReLU(),
            nn.MaxPool2d(3, 2)
        )

        self.fc = nn.Sequential(
            nn.Linear(256 * 5 * 5, 4096),
            nn.ReLU(),
            nn.Dropout(0.5),
            nn.Linear(4096, 4096),
            nn.ReLU(),
            nn.Dropout(0.5),
            nn.Linear(4096, 10),
        )

    def forward(self, img):
        feature = self.conv(img)
        output = self.fc(feature.view(img.shape[0], -1))
        return output

net = AlexNet()
# print(net)

def load_data_fashion_mnist(batch_size, resize=None, root='~/Datasets/FashionMNIST'):
    trans = []
    if resize:
        trans.append(torchvision.transforms.Resize(size=resize))
    trans.append(torchvision.transforms.ToTensor())

    transform = torchvision.transforms.Compose(trans)

    mnist_train = torchvision.datasets.FashionMNIST(root=root, train=True, download=True, transform=transform)
    mnist_test = torchvision.datasets.FashionMNIST(root=root, train=False, download=True, transform=transform)

    train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers=4)
    test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, num_workers=4)

    return train_iter, test_iter

batch_size = 128

train_iter, test_iter = load_data_fashion_mnist(batch_size, resize=224)

lr, num_epochs = 0.001, 5
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
d2l.train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs)

训练结果如下:
在这里插入图片描述
就可以愉快的使用d2lzh_pytorch包,然后继续阅读动手学深度学习啦。

展开阅读全文
  • 2
    点赞
  • 4
    评论
  • 4
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

打赏
文章很值,打赏犒劳作者一下
相关推荐
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页

打赏

哪来那么多热情^^

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值