自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(12)
  • 收藏
  • 关注

原创 机器学习之朴素贝叶斯

朴素贝叶斯的核心思想是在给定一组特征的情况下,计算各个类别出现的可能性,然后选择可能性最大的类别作为预测结果。其关键之处在于“朴素”假设,即将复杂的多维条件概率简化为单个特征的条件概率的乘积。

2024-05-21 16:25:16 741 1

原创 机器学习之集成学习

集成学习(Ensemble Learning),作为机器学习领域的一个重要组成部分,致力于通过组合多个学习器(通常称为基学习器或弱学习器)来提高整体模型的预测性能。它的基本思想是将“弱者联合成强者”,即将多个可能表现一般但各具特色的学习器集成起来,共同构建一个性能更为优越的强学习器,下面结合博主个人理解,展开叙述集成学习的核心思想和API介绍,以及随机森林,Adaboost,XGBoost,GBDT等算法特点。

2024-05-19 21:28:12 1011 1

原创 机器学习之K-means聚类算法

K-means 算法是一种经典的无监督学习算法,广泛应用于数据聚类领域。该算法的目标是将 n 个观测值划分为 K 个聚类,使得每个观测值都属于离其最近的均值(即聚类中心或质心)所对应的聚类,并且每个聚类内部的数据点尽可能相似,而不同聚类之间的数据点则尽可能不同。K-means 算法作为一种简单而有效的聚类算法,在数据分析和挖掘领域发挥着重要作用。通过不断的研究和改进,K-means 算法及其变种和扩展算法将继续在更多领域发挥更大的作用。

2024-05-18 18:09:01 794

原创 机器学习之决策树

决策树是一种基本的分类与回归方法,它通过一系列的决策规则将数据集分割为不同的类别或预测值。在决策树中,每个内部节点代表一个属性,每条边代表一个属性取值,每个叶子节点代表一个类别或预测值。决策树的生成过程通常包括特征选择、树的构建和剪枝三个步骤。总之,决策树是机器学习领域的重要算法之一,它以树形结构为基础,通过一系列的决策规则将数据集分割为不同的类别或预测值。在实际应用中,我们可以根据具体问题的特点和需求选择合适的决策树算法进行建模和预测。

2024-05-15 22:03:33 1136

原创 机器学习之逻辑回归算法(保姆级笔记)

在数据驱动的决策制定和自动化分析中,分类算法发挥着至关重要的作用。逻辑回归作为一种简单而强大的分类算法,具有以下几个显著的优点:解释性强:逻辑回归模型可以输出每个特征对最终分类结果的影响程度,这使得模型结果易于解释和理解。计算效率高:逻辑回归的计算成本相对较低,适合处理大规模数据集。无需假设线性关系:虽然逻辑回归模型的数学形式是基于线性假设的,但它实际上可以处理非线性关系,通过特征转换或非线性特征生成来实现。易于实现和调试。

2024-05-12 21:41:36 733

原创 机器学习之线性回归算法(超详细)

机器学习中的线性回归方程算法是一种基础的预测性建模技术,它研究的是因变量(目标变量)与自变量(特征变量)之间的关系。线性回归试图找到一条最佳的直线(在多维空间中可能是超平面),这条直线能够尽可能地拟合数据点,从而能够预测新的数据点的目标值。在接下来的内容中,我们将详细介绍线性回归方程算法的原理、实现步骤以及其在实践中的应用,并如何去优化对应的参数找到问题的最优解。通过对这些内容的了解,读者将能够掌握线性回归方程算法的基本知识和技能,为进一步学习和应用机器学习算法打下坚实的基础。

2024-05-09 22:21:22 12867 2

原创 机器学习入门级教程

机器学习(Machine Learning)作为人工智能(Artificial Intelligence, AI)的一个重要分支,近年来在科学研究、工业应用以及日常生活中都扮演着越来越重要的角色。其核心是让计算机系统能够从经验中自动学习和改进,而无需进行明确的编程。本文是本人根据对机器学习的学习理解,总结归纳了关于机器学习的一些前言性内容,并且博主在博客创建了机器学习部分分类专栏,归纳了许多算法类型的求解和API的应用,非常适合新手小白进行学习。

2024-05-08 21:59:30 1269 1

原创 Pandas进阶之数据可视化

Pandas数据可视化是数据分析过程中一个极其重要的环节,它利用Pandas库提供的强大功能,结合可视化工具(如Matplotlib、Seaborn等),将数据以图表、图形等视觉化方式展示,帮助人们更直观地理解数据的含义和关系,从而更好地进行数据分析和决策。Pandas是一个基于Python的数据处理和分析库,提供了丰富的数据结构和数据分析工具,能够高效地处理和分析各种数据。

2024-05-06 20:50:33 727

原创 Pandas进阶之数据分析

在当今信息爆炸的时代,数据已成为企业决策、科学研究乃至个人生活中不可或缺的一部分。然而,面对海量的数据,如何高效、准确地提取有价值的信息,成为了我们面临的一大挑战。此时,数据分析工具的重要性便凸显出来,而Pandas正是这一领域中的佼佼者。

2024-05-03 21:49:12 2047 2

原创 史上最强Pandas入门教程

Pandas是一个开源的Python库,它提供了快速、灵活和富有表现力的数据结构,使得关系或标记数据的操作既简单又直观。Pandas最初被设计用于金融数据分析和数据清洗任务,但现在已被广泛应用于各种数据分析和数据处理场景,包括学术、金融、统计学等各个领域。本文主要讲述Pandas的基础操作,教会新手如何快速入门Pandas的应用。分别从Series和Dataframe两个讲述他们的操作命令。

2024-04-23 22:17:34 1280 1

原创 10分钟带你学会Numpy基础

NumPy(Numerical Python)是Python的一个开源的数值计算扩展库。这个库可以用来存储和处理大型矩阵,其效率远高于Python自身的嵌套列表结构。NumPy支持大量的维度数组与矩阵运算,并且针对数组运算提供了大量的数学函数库。在NumPy中,数组对象(ndarray,我愿称之为最强的一个功能)是其核心。使用NumPy的array()函数,可以从Python数组或列表中创建NumPy数组。一旦创建了数组,就可以使用NumPy提供的各种函数和方法对其进行操作。例如,和。

2024-04-20 21:15:22 839

原创 Python中的短路运算(short-circuiting)应该注意哪些问题?

摘要 :本文主要讲解在python语言的实际开发中,如何应用短路运算提高代码效率 ,和避免其副作用并针对性的提出了几种解决方案

2024-04-18 21:19:11 1925

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除