参考资料
- 项目:https://zitniklab.hms.harvard.edu/projects/GNNGuard/
- 代码:https://github.com/mims-harvard/GNNGuard
- paper:https://arxiv.org/abs/2006.08149
- poster:https://zitniklab.hms.harvard.edu/publications/posters/GNNGuard-NeurIPS20.pdf
介绍
论文来自于NeurIPS 2020,题目是GNNGUARD,一个应用于图神经网络的通用的抵御对抗攻击的算法。
意义
备注:
GNNGUARD一种通用的算法,任何GNN通过集成GNNGUARD,可以在即使在扰动的图上训练时也可以做出正确预测。
实现效果如图:面对各种对抗攻击时可以有效地恢复GNN的性能。
假如攻击者对结点u投毒,令没有防御的分类器误分类;但是有了GNNGUARD,即使有扰动,也可以正确分类。
核心思想
检测和量化图结构与结点特征之间的关系。
GNNGUARD的本质是一个算法,以