基于图神经网络的对抗攻击防御 GNNGUARD: Defending Graph Neural Networks against Adversarial Attacks

参考资料

  • 项目:https://zitniklab.hms.harvard.edu/projects/GNNGuard/
  • 代码:https://github.com/mims-harvard/GNNGuard
  • paper:https://arxiv.org/abs/2006.08149
  • poster:https://zitniklab.hms.harvard.edu/publications/posters/GNNGuard-NeurIPS20.pdf

介绍

论文来自于NeurIPS 2020,题目是GNNGUARD,一个应用于图神经网络的通用的抵御对抗攻击的算法。

意义

在这里插入图片描述
备注:
GNNGUARD一种通用的算法,任何GNN通过集成GNNGUARD,可以在即使在扰动的图上训练时也可以做出正确预测。

实现效果如图:面对各种对抗攻击时可以有效地恢复GNN的性能。

假如攻击者对结点u投毒,令没有防御的分类器误分类;但是有了GNNGUARD,即使有扰动,也可以正确分类。

核心思想

检测和量化图结构与结点特征之间的关系。
在这里插入图片描述
GNNGUARD的本质是一个算法,以

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

苏打呀

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值