第四章——数学知识1

质数

质数:在大于1的整数中,如果只包含1和本身这俩个约束,就被叫质数或素数。

质数判定试除法

质数的判定——试除法:如果d能整除n,则n/d再除n,结果是一个整数。 d≤n/d。

bool is_prime(int x)
{
    if (x < 2) return false;
    for (int i = 2; i <= x / i; i ++ )
        if (x % i == 0)
            return false;
    return true;
}

分解质因数试除法

质因数:一个正整数的俩个因数都是质数

分解质因数——试除法:

从小到大枚举所有的质因数,这里我们要的是质因子,即因子是质数。

当枚举到i时,不包含任何2到i-1中的质因子

如果n% i==0,则说明n中不包含任何2到i-1之间的质因子,i当中也不包含任何2到i-1中的质因子

,因此i一定是一个质数。

即只要满足if(n%i==0)说明i一定是质数。n中最多只包含一个大于sqrt(n)的质因子(假设n中有俩个大于sqrt(n)的质因子,俩俩乘一块之后肯定大于n),因此枚举的时候可以先把小于根号n的枚举出来,如果最后剩余的数大于1,则说明这个数时大于根号n的质因子

void Prime(int n)//求质因数
{
    int count = 0;
    for (int i = 2; i <= n/i; ++i)
    {
        count = 0;
        if (n % i == 0)// i是质数
            while (n % i == 0)
            {
                n = n / i;//n变成另一个因数,如n原来是6,i是3,n此刻变为2
                count++;//如果要把一个数表示成指数和底数的形式,如8=2^3,count就是指数,i就是底数
                
            }
        printf("%d %d\n", i, count);
    }
    if (n > 1) printf("%d 1\n", n);//大于根号n的质数
}

int main()
{
    while (1)
    {
        int n;
        scanf("%d", &n);
        Prime(n);

    }
    return 0;
}

筛质数

把一个数组里面,所有数的倍数删掉。

如这里第一个数是2,先把2的所有倍数删掉,接着删除3的所有倍数,删4的所有倍数……

如果某个数没有被筛过的话,说明它是一个质数、

上面算法较为麻烦,我们可这样做,以11为例,我们不需要把2-10的所有数都进行判断,我们把2-10中的质数找出来,看11是不是这些质数的倍数,如果不是则说明11是质数,反之不是质数。即:筛的时候把质数的所有倍数筛出来即可。

方法一 埃氏筛法

时间复杂度 O(nloglogn)


#include<bits/stdc++.h>
using namespace std;
const int N = 1000010;
int n, cnt;
int prime[N];//用来存储质数
bool st[N];//st代表是否被删除,true代表被删除,false代表未删除
void primes()
{
    for (int i = 2; i <= n; i++)
    {
        if (!st[i])prime[cnt++] = i;//如果当前数没有被筛出去,说明是质数
        for (int j = i + i; j <= n; j += i)//把每个数的倍数删掉
        {
            st[j] = true;
        }
    }
}
int main()
{
    cin>>n;
    primes();
    cout<<cnt<<endl;
    return 0;
}

方法二 线性筛法

合数:合数是指在大于1的整数中除了能被1和本身整除外,还能被其他数(0除外)整除的数

这里争取用合数的某个质因子把每个合数筛掉,线性筛法要优于第一种筛法。

using namespace std;
const int N = 1000010;
int n, cnt;
int prime[N];//用来存储质数
bool st[N];//st代表是否被删除,true代表被删除,false代表未删除
void primes()
{
    for (int i = 2; i <= n; i++)
    {
        if (!st[i])prime[cnt++] = i;//如果当前数没有被筛出去,说明是质数
        for (int j = 0; prime[j] <= n / i; j++)//从小到大枚举所有的质数,当质数大于某个数的平方根时,跳出循环
        {
            st[prime[j] * i] = true;//把primes[j]*i筛掉
            if (i % prime[j] == 0) break;
        }
    }
}
int main()
{
    cin >> n;
    primes();
    cout << cnt << endl;
    return 0;
}

线性筛法核心:n只会被它的最小质因子筛掉。

原理:j时从小到大在枚举所有的质数。下面图中的pj代表prime[j]

试除法求约数

如果d是n的约数,则n/d也一定能整除n,即我们枚举约数时,枚举到d≤n/d即d≤根号n

#include<vector>
vector<int> get_divisors(int n)
{
    vector<int> res;
    for(int i=1;i<=n;++i)
        if (n % i == 0)
        {
            res.push_back(i);//如果i是约数,就把i放入到数组中
            if (i != n / i) res.push_back(n/i); //当i不等于n/i时,再把n/i放进来,有可能n是i的平方,如果俩个约数一样,数组里面放的约数可能会重复
             //所以这里要判断一下

        }
    sort(res.begin(), res.end());
    return res;
}
int main()
{
    int n;
    cin >> n;
    while (n--)
    {
        int x;
        cin >> x;
        auto res = get_divisors(x);
        for (auto x : res)
            cout << x << " ";
        cout << endl;
    }

    return 0;
}

约数个数和约数之和

约数个数:如果一个正整数N分解完质因数后可这样表示

则它的约数个数可表示为

1~n中1是所有数的约数,2是所有以2为倍数的约数……,因此1-n当中总共约数的个数和1-n当中

总共倍数的个数是相同的, 因此我们可以通过统计1-n当中有多少倍数,进而统计出约数。

int范围内约数个数最多的大概是1500个。

约数之和:可这样表示

解题思路:把a1-an分解成这种形式,之后所有指数+1再相乘

#include<unordered_map>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;

const int mod = 1e9 + 7;
int n;
int main()
{
   
    cin >> n;
    unordered_map<int, int> primes;//存储所有的底数和指数
    while (n--)
    {
        int x;
        cin >> x;
        for (int i = 2; i <= x / i; ++i)
        {
            while (x % i == 0)
            {
                x /= i;
                primes[i]++;//质因数指数+1
            }
        }
        if (x > 1) primes[x]++;//如果x>1说明x是一个比较大的质因数
    }
    LL res = 1;
    for (auto prime : primes)
    res = res * (prime.second + 1) % mod;
    cout << res << endl;
    return 0;
 }

求约数和

先求出p的0次方一直加到p的a次方,用这个公式t会由t变为p的1次方,一直乘下去会变为t的a次方

#include<unordered_map>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;

const int mod = 1e9 + 7;
int n;
int main()
{
   
    cin >> n;
    unordered_map<int, int> primes;//存储所有的底数和指数
    while (n--)
    {
        int x;
        cin >> x;
        for (int i = 2; i <= x / i; ++i)
        {
            while (x % i == 0)
            {
                x /= i;
                primes[i]++;//质因数指数+1
            }
        }
        if (x > 1) primes[x]++;//如果x>1说明x是一个比较大的质因数
    }
    LL res = 1;
    for (auto prime : primes)
    {
        int p = prime.first, a = prime.second;//p表示底数,a表示指数
        LL t = 1;
        //求p的0次方加和一直到p的a次方
        while (a--)
        {
            t = (t * p + 1) % mod;
         
        }
        res = res * t % mod;
    }
    cout << res << endl;
    return 0;
 }

最大公约数(欧几里得算法)

辗转相除法:一个数能整除a,也能整除b,这个数就能整除a+b,也能整除ax+by,求a和b的最大公约数等于求b和a%b的最大公约数,

#include<iostream>
using namespace std;
int gcb(int a, int b)
{
    return b ? gcb(b, a % b) : a;//b如果不是0,返回gcb(b, a % b),反之返回a
}
int main()
{
    int n;
    scanf("%d", &n);
    while (n--)
    {
        int a, b;
        scanf("%d %d", &a, &b);
        printf("%d", gcb(a, b));
    }
    return 0;
}

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

头发没有代码多

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值