自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(20)
  • 资源 (2)
  • 收藏
  • 关注

原创 qt 将主窗口的数据传到子窗口去

1.主要是通过connect绑定信号和槽函数的机制实现两个页面的交互

2022-07-13 22:28:03 2276

原创 ubuntu18.04server和cuda及cudn安装

第一步:U盘启动盘制作 软碟通(UltralSO)刻录工具第二步:进入BIOS,更改模式(这里就是很容易出现问题的地方)不然容易出现:No Boot Device Found. Press andy key to reboot the machine#######更改模式(F1 F2 F12一起狂按,总会出来):下面有两种,Legacy boot 模式 和 Uefi boot模式在LEGACY BOOT下可以看到,这是磁盘的信息,SSD固态两个,机械一个(我是三块,一般就一块吧)在UEFI

2022-05-05 14:35:28 1387

原创 matlab或python局部放大图像,和折线图,显示在同一个图中

局部放大图像图,表示效果图局部放大折线图操作1.在matlab中figure(窗口名字),plot(画图),grid(是否显示网格)等一系列操作,总之至少你要显示一个图表出来2.在弹出的figure窗口(图现在窗口内)中进行操作,接下来,点击“查看—>属性编辑器”,出现下面字样。=======重点说一下几个属性:x轴:x轴范围可以自己手动改(代码就是随便写,只要能显示图像就行);x标签可以自己手动改;y轴:同上3.后面有个3.后面有个“刻度”按钮,直接按照自己的喜好调节x,y轴的间隔

2022-01-06 17:23:35 4165

原创 anaconda和ubuntu18.64的使用安装

2021-12-07 18:55:48 1023

原创 将win7变成代理,ubuntu18.04server通过代理上网

别人的:https://blog.csdn.net/wwwdc1012/article/details/72675390我的: https://blog.csdn.net/weixin_49497024/article/details/120860770

2021-10-22 11:04:39 255

原创 L1范数,L1损失,还有MAE损失的区别

1.范数用来衡量一个向量的大小,例如向量xxx,∥x∥p=(∑in∣xi∣p)1p{{\parallel x\parallel}_p=(\sum_{i}^{n}|x_i|^p)^{\frac{1}{p}}}∥x∥p​=(∑in​∣xi​∣p)p1​。该公式可以解释为:向量中的各个元素的绝对值的ppp次方之和的1p\frac{1}{p}p1​次方。再直观点:该xxx范数(∥x∥p{\parallel x\parallel}_p∥x∥p​)衡量从原点到点xxx的距离。-----范数满足的性质,以及ppp

2021-09-08 16:04:54 2088 1

原创 数字天空面试

1、海森矩阵2、特征提取的公式3、PCA、 SVM公式4、范数的公式5、正则项的区别6、注意力机制的公式7、优化算法中几个梯度下降算法的公式原理8、dropout为啥有效9、泰勒展开公式10、目标检测中Faster RCNN候选区损失函数如何构建的●anchor干嘛的11.gpu并行的问题...

2021-09-02 14:16:51 507 2

原创 决策树分类器

以二分类为例,西瓜书分瓜好坏先算根节点(哪一类)的信息熵 Ent(D)=−∑i=12p(xi)logp(xi)Ent(D)=-\sum \limits_{i=1} ^{2}p(x_i)logp(x_i)Ent(D)=−i=1∑2​p(xi​)logp(xi​) 对好瓜和坏瓜进行计算再计算属性中(色泽,根蒂等)那个作为接下的分支比较好:可以先随机选取一个属性,然后计算这个属性中取各个数值的信息熵。例如,选取色泽,而色泽可以取值:青绿,乌黑,浅白。比如算青绿的信息熵, −∑i=12p(xi)logp(

2021-08-26 11:21:24 114

原创 贝叶斯公式和朴素贝叶斯分类

条件概率 => 贝叶斯公式 => 朴素贝叶斯分类器(选后验概率中最大的那个值)参考视频:算法原理与实现

2021-08-26 10:31:55 121

原创 熵,交叉熵与softmax

参考视频链接:各种熵视频了解经常说交叉熵+softmax(或者交叉熵损失函数),应该是对多分类下,softmax作为最后一层输出,交叉熵再判断这softmax的概率和真实值之间对不对(感觉不对,应该是用softmax的公式去求交叉熵简化公式中的q(ci)q(c_i)q(ci​))。二分类其实也可以,只是不常用softmax吧。softmax和sigmoid一样可以做激活,在最后一层就叫损失,前者多分类,后者二分类。熵:是一个物理学概念,一个系统的不确定性程度,或者说是一一个系统的混乱程度。信息熵:一

2021-08-25 19:07:40 531

原创 UDVD(CVPR 2020): Unified Dynamic Convolutional Network for SRwith Variational Degradations

UDVD(CVPR 2020):Unified Dynamic Convolutional Network for Super-Resolution withVariational Degradations简要说明\qquadUDVD是从退化模型的角度考虑。将动态卷积进入超分辨网络,使得模型可以适应多种退化模型(这句话说起来有点儿像SFTMD,学习多种核的共同之处,然后使得模型可以适应多种退化模型)\qquad网络结构主要分为两块:特征提取(Feature Extraction Network,FE

2021-01-14 11:01:14 288

原创 SFTMD(2019CVPR):Blind Super-Resolution With Iterative Kernel Correction

SFTMD:Blind Super-Resolution With Iterative Kernel Correction也叫做IKC简要概括\qquad 迭代模糊核的方法是从模型退化的角度来思考SISR问题,它假设LR是SR若干模糊核H退化后得到,所以论文中想通过对多个(多种)模糊核进行建模学习,使的SISR网络可以学习到这些模糊核对SR的影响,从而学习LR到SR的映射关系。\qquad 论文中的网络结构分为三个部分,核估计结构(P),核矫正结构(C),主网络结构(SFTMD)论文采用迭代这三个部

2021-01-14 09:54:16 1573 2

原创 EventSR(CVPR2020):From Asynchronous Events to Image Reconstruction, Restoration, and SR

EventSR: From Asynchronous Events to Image Reconstruction, Restoration, and Super-Resolution via End-to-End Adversarial Learning视屏:https://www.youtube.com/watch?v=OShS%5C_MwHecs点击1. Introduction事件相机具有非常高的动态范围[24]、无运动模糊和高时间分辨率等明显优势,已经证明,单独的事件相机足以执行高级任务,如

2020-11-04 20:50:06 818

原创 NatSR(CVPR2019)Explicit Natural Manifold Discrimination

NatSR: Natural and Realistic Single Image Super-Resolution with Explicit Natural Manifold Discrimination论文及其源码地址:https://github.com/JWSoh/NatSR论文亮点对于单图像超分辨率利用客观的损失函数无法重建出真实的精细纹理和细节,而这些对于感知质量至关重要。通过生成增强纹理来正强感知质量,会生成虚假细节,通常使得图像看起来不自然。所以提出Natural Manifold

2020-10-11 11:18:42 519

原创 RCAN(ECCV2018)Residual Channel Attention Networks

图像超分辨率使用非常深的残差信道注意网络论文地址:https://openaccess.thecvf.com/content_ECCV_2018/papers/Yulun_Zhang_Image_Super-Resolution_Using_ECCV_2018_paper.pdf代码地址:https://github.com/yulunzhang/RCAN因为LR中不同通道信息被均等对待,所以在CNN中发展不是很好。所以作者提出了这个想法,RCAN.。RCAN中,的主结构就是RIR。RIR包括若干

2020-09-30 10:01:18 1502

翻译 CS-NL(CVPR2020) Cross-Scale Non-Local Attention and Exhaustive Self-Exemplars Mining

CS-NL(CVPR2020):Image Super-Resolution with Cross-Scale Non-Local Attention and Exhaustive Self-Exemplars Mining.论文地址:https://arxiv.org/pdf/2006.01424.pdfAbstractSISR是利用大量外部数据训练模型来恢复图像的局部特征,但是他们忽视了自然图像的远距离特征的相似性质。(大量数据就是成对的<LR,HR>,自然图像就是输入的要恢复的LR,

2020-09-23 16:47:15 3580 5

翻译 DRN(CVPR2020)Dual Regression Networks

DRN: [ Closed-loop Matters: Dual Regression Networks for Single Image Super-Resolution ]DRN文论链接SISR两个潜在的局限学习LR到HR的隐射是一个病态问题,因为从HR下采样到LR,可以有无限个HR与LR对应。所以解空间太大,很难找到很好的解。应用程序中可能无法获得成对的LR-HR数据,而且底层的退化方法通常是未知的。所以为了很好解决上面问题,使得模型得到更好适用性。文章提出对偶回归(对称回归?感觉特别像反

2020-09-22 11:04:44 2065 8

翻译 TTSR(CVPR2020)Texture Transformer Network

TTSR:Learning Texture Transformer Network for Image Super-Resolution(CVPR2020)CrossNet采用光流将LR和Ref图像在不同尺度上对齐,并将其拼接到解码器的相应层中。但是这些方法的性能很大程度上取决于LR和Ref图像的对齐质量。而且在面对LR和Ref图像之间的大视点变化时,通常会搜索和传输不准确的纹理。此外,光流等对准方法耗时较长,不利于实际应用。SRNTT采用预训练模型VGG来提取特征和内容,然而,这种高级语义特征并不

2020-09-20 15:46:18 1265 2

转载 SRNTT(CVPR2019)——Ref超分辨

SRNTT:Image Super-Resolution by Neural Texture Transferhttps://www.cnblogs.com/mjhr/p/11233489.html点击这里

2020-09-18 16:29:04 625

转载 CrossNet(CVPR2018)——Ref超分辨

@[CorssNet](An End-to-end Reference-based Super Resolution Network using Cross-scale Warping)https://blog.csdn.net/Aray1234/article/details/103009374

2020-09-18 16:24:36 788

ubuntu18.04服务器安装加cuda驱动问题

ubuntu18.04服务器安装加cuda驱动问题

2021-10-28

couda操作.txt

适合研一,研二接触深度模型

2021-10-28

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除