今天我们来讲一下时间复杂度如何计算
我们在5月6号已经引入过渐进符号
通过渐进符号等一系列概念,我们可以渐进地描述一个函数的上界、下界,同时也可以描述算法执行时间的增长趋势。
在计算时间复杂度的时候,我们经常使用 O 渐进上界符号。因为我们关注的通常是算法用时的上界,而不用关心其用时的下界。
那么具体应该如何计算时间复杂度呢?
求解时间复杂度一般分为以下几个步骤:
- 找出算法中的基本操作(基本语句):算法中执行次数最多的语句就是基本语句,通常是最内层循环的循环体部分。
- 计算基本语句执行次数的数量级:只需要计算基本语句执行次数的数量级,即保证函数中的最高次幂正确即可。像最高次幂的系数和低次幂可以忽略。
- 用大 O 表示法表示时间复杂度:将上一步中计算的数量级放入 O 渐进上界符号中。(大家请注意,这一步看似简单,但是在我理解big O的时候,我认为它至少表达了两次含义1:增长趋势是一样的,用数学世界的语言描述就是斜率是一样的,图像上他们是平行的两个曲线,分别一个在上,一个在下;2:用时间来描述时间复杂度的T的增长是不会超过这个bigO的,因为bigO是它的上界,但是不管是时间T还是bigO,用数学语言描述,他们都是自变量为n的函数,图像上他们是平行的两个曲线,分别一个在上,一个在下,在上面的就是bigO含糊描述的曲线,下面的就是T函数描述的曲线)
同时,在求解时间复杂度还要注意一些原则:
- 加法原则:总的时间复杂度等于量级最大的基本语句的时间复杂度。
- 乘法原则:循环嵌套代码的复杂度等于嵌套内外基本语句的时间复杂度乘积。(这个主要用于计算有循环的算法的时间复杂度计算)
下面我们给出一些实例:
常数O(1)
一般情况下,只要算法中不存在循环语句、递归语句,其时间复杂度都为O(1)
O(1)只是常数阶时间复杂度的一种表示方式,并不是指只执行了一行代码。只要代码的执行时间不随着问题规模 n 的增大而增长,这样的算法时间复杂度都记为O(1)
让我再思考一下这个复杂度的概念
注意:
O(1)在这里表达了一个概念:
没错,你的理解是正确的。O(1)代表的是一种概念,而不是某个具体算法的执行次数。它表示算法的执行时间与输入规模是相互独立的,即算法的执行时间是固定的,不随输入规模的增加而增加。
因此,O(1)并不是某个算法真实的具体执行次数的函数表达式,而是一个用于描述算法的时间复杂度的函数,即算法的执行时间与输入规模无关的特性。
并且大家不要讲算法的具体执行次数和算法的时间复杂度相互混淆,
算法的具体执行次数是一个数字
算法的时间复杂度是算法的一个属性或者特性
ps:关于big O中渐近和上界限的数学描述
首先将执行次数用输入规模n写成一个表达式f(n),然后利用数学上渐进的概念和上界限的概念,也1:就是当n趋近无穷,f(n)在斜率上无线接近某个函数,
2:且我对这个在斜率上无线接近的函数还有一个要求,也就是需要时f(n)这个函数的上界。
这个函数我用O(f(n))来表示,当然这个O(f(n))函数也可以写成一个具体的函数,我们为了刻画感知认识一个算法所需运行时间的多少,就发明了算法的时间复杂度,然后我们就利用这个函数去估计这个算法的时间复杂度,从而让我们对算法的运行消耗时间有一个更具象、更有感知的认识和理解。
通过上述的数学语言描述,它从始至终一直在表达一个意思,也就是算法的执行时间与输入规模时相互独立的无关。
我们在这里的字里行间无时无刻的都在使用各种数学基本概念
ps:
参悟算法的时间复杂度带给这个算法的属性,你需要两步
第一步:写出函数表达式
第二部:将这个函数表达式再用文字语言描述解释出来
线性O(n)
平方O(n^2)
阶乘O
对数O
线性对数O
明早六点,我们准时开始学习
3. 空间复杂度
的概念和相关内容
晚安