pytest框架实战项目-数据驱动+关键字驱动

一、框架介绍

本框架主要是基于Python+pytest+allure+log+yaml+csv+Jenkins实现的接口自动化框架,本系统最大特点为:系统使用数据驱动+关键字驱动模式,只需编写csv文件即可实现新增测试用例。

二、实现功能

  1. 测试数据隔离, 实现数据驱动
  2. yaml文件实现动态参数处理,实现关键字驱动
  3. 自定义断言: 接口校验响应参数时,可从csv文件中取出响应文本;同时yaml模板中已有响应代码
  4. 自动生成用例代码: 测试人员在csv文件中填写好测试用例, 程序可以直接生成yaml代码,纯小白也能使用
  5. 代理录制: 支持代理录制,生成yaml格式的测试用例;如使用fiddle导出har文件,在Terminal中输入 har2case xxx.har -2y 转为yaml文件
  6. 统计接口的运行时长: 拓展功能,订制开关,可以决定是否需要使用,使用装饰器调用,方便管理
  7. 日志模块: 打印每个接口的日志信息,同样订制了开关,可以决定是否需要打印日志(待实现)
  8. 自定义拓展字段: 如用例中需要编写yaml文件、读取yaml文件,可直接调用

三、目录结构(其中未写出的表示用于调试或非本项目文件)

  • pytest_demo 项目根目录
    • common 公共类,公共方法文件夹
      • log_util.py
      • public_func.py
    • configs 配置文件、运行模板
      • config.yaml
      • readme.text
      • test_case.yaml
      • test_select_template.yaml
      • test_update_template.yaml
    • data 测试用例数据文件夹
      • select_case
      • update_case
    • logs 函数运行日志文件夹
      • func_move_log.txt
    • reports allure报告生成文件夹
      • index.html
    • temp 用于保存生成allure报告的json数据
    • testcases 测试用例文件
      • test_case_of_demo.py
    • pytest.ini 运行规则
    • requirements.txt 运行项目需要导的包
    • all.py 测试用例运行总入口

四、创建用例

  1. 在data文件夹下方创建相关的测试csv用例,可新建一份csv文件,也可直接在other.csv文件中编写测试用例
name,url,method,msg,data
精品库存,/api/boutiqueStock/boutiqueStockDetailReport.json,POST,查询成功,"{""max"":15,""offset"":0,""pageList"":[15],""regionId"":""82"",""bUnitId"":""1""}"
  1. 用例文件基本规则:
    1. csv文件首行必须使用这五个字段,且必须都为小写
    2. 文件编码格式严格要求为UTF-8,其他编码无法读取
    3. 字段可随意调换前后顺序
    4. method字段下的数据不区分大小写
name,url,method,msg,data
  1. 写完之后,如果不是新增的csv文件则添加完即可;是新添加的csv文件,则需要在下列代码中,新增一个方法将你新增的csv文件路径写入其中
class Test_case:
    @pytest.mark.parametrize("data", get_teststeps("data/select_case/{新增文件名}.csv"))
    def test_{新增方法名}(self, data):
        parameters_request(data)
  1. 执行test_case_of_demo.py文件之后,系统会根据你选择的csv文件自动匹配yaml文件模板中的关键字,从而生成测试数据
  2. 你可以发现,在运行过程中,与运行结束时,系统中的test_case.yaml文件为空,这里使用了后置固件,在运行用例结束后系统会调用clean_yaml()方法清空此文件,避免遗留数据对下一个用例造成影响

五、运行流程

  • 运行 text_case_of_demo.py 文件,文件将get_teststeps()作为参数传递给parameters_request()方法
  1. get_teststeps()方法生成字典列表,列表中的一个字典表示一条用例
# 获取测试用例列表
def get_teststeps(csv_file):
    case_template = r"configs/test_select_template.yaml"
    case_file = r"configs/test_case.yaml"
    csv_file = csv_file
    envReplaceYaml(csv_file, case_template, case_file)
    yml_data = read_yaml(case_file)
    return yml_data
  1. envReplaceYaml()方法用于生成基于模板的测试用例
def envReplaceYaml(csv_file, yaml_file, new_yaml_file):
    """:param 关键字驱动"""
    try:
        with ExitStack() as stack:
            yml_file = stack.enter_context(open(get_path()+yaml_file, 'r', encoding="utf-8"))
            yml_output = stack.enter_context(open(get_path()+new_yaml_file, 'w', encoding="utf-8"))
            yml_file_lines = yml_file.readlines()
            profileList = fromCsvToJson(csv_file)
            # profileList的长度即为测试用例的数量
            for i in range(0, len(profileList)):
                for line in yml_file_lines:
                    new_line = line
                    # 如果找到以“${”开头的字符串
                    if new_line.find('${') > 0:
                        # 对字符串以“:”切割
                        env_list = new_line.split(':')
                        # 取“:”后面的部分,去掉首尾空格,再以“{”切割,再以“}”切割取出变量名称,比如“name”
                        env_name = env_list[1].strip().split('{', 1)[1].split('}')[0]
                        if env_name in profileList[i].keys():
                            replacement = profileList[i][env_name]
                            for j in range(0, len(profileList)):
                                new_line = new_line.replace(env_list[1].strip(), replacement)
                    yml_output.write(new_line)
                yml_output.write("\n")
    except IOError as e:
        print("Error: " + format(str(e)))
        raise
  1. parameters_request()方法中加入了接口校验与断言,用来判断用例是否通过
def parameters_request(request_data: dict, system="oa", environment="110_url"):
    if type(request_data) is list:      # 此判断是区分用例执行还是调试使用,用例数据为字典列表
        request_data = request_data[0]
    request = request_data["request"]
    validate = request_data["validate"]
    method = request["method"]
    url_path = re.findall("(.*?)/api", system_environment(system, environment)[1])[0]
    url = url_path + request["url"]
    data = request["data"]
    headers = request["headers"]
    headers.update(parameter_check(system, environment))
    response = send_request(method=method, url=url, data=data, headers=headers)
    if response.status_code == 200:
        assert_validate(dict(response.json()), validate)
    else:
        raise TypeError('the response status.code is %s' % response.status_code)
    return response
  1. system_environment()方法用于判断系统及环境, 返回ip路径及账号密码等信息
def system_environment(system, environment):
    file_env = r"configs/config.yaml"
    if environment in ["110_url", "test_url", "onLine_url"]:
        json_data = read_yaml(file_env)[environment]
        if system.lower() == "oa":
            url = json_data["url1"] + json_data["url_oa"]
        elif system.lower() == "finance":
            url = json_data["url2"] + json_data["url_financial"]
        else:
            raise KeyError(f"config.yaml中未找到”{system}“系统")
    else:
        raise KeyError(f"config.yaml中未找到”{environment}“环境")
    return json_data, url
  1. parameter_check()方法用于获取登录接口返回的token与sign等校验信息(其中key为固定值,加密方式为MD5)
def parameter_check(system, environment) -> dict:
    key = ""  # 加密密钥,暂不展示
    json_data, url = system_environment(system, environment)
    loginNum, password = json_data["username"], json_data["password"]
    data = {"loginNum": loginNum, "password": password}
    response = send_request("post", url, data)
    token = re.findall('"token":"(.*?)"', response.text)[0]
    now_time_new = int(round(time.time() * 1000))  # 当前时间时间戳
    middle = encrypt_md5(token + str(now_time_new))
    sign = encrypt_md5(middle + key)
    encryption = {"Authorization": token, "Timestamp": str(now_time_new), "Sign": sign}
    return encryption
  1. teardown_class()方法用于,用例执行结束之后,清空test_case.yaml文件,防止历史数据干扰
@pytest.fixture(scope="class", autouse=True)
def teardown_class():
    clear_yaml("configs/test_case.yaml")
  1. 用例运行结束之后,可在./reports/index.html中查看allure报告

六、扩展

  • 文件上传接口模板实现
  • 多线程模式运行时出现的登录失效问题
  • 接口关联,数据共享实现
  • jenkins部署+每日发送以邮件实现
  • 运行测试用例时,日志格式化输出实现
  • allure报告美化实现
以下是 Selenium pytest 项目实战的一些笔记: 1. 安装所需的软件和库: - 安装 Python:在官网下载 Python 并安装。 - 安装 Selenium:使用 pip 命令安装 Selenium 库。 - 安装 pytest:使用 pip 命令安装 pytest 框架。 2. 创建项目结构: - 创建一个项目文件夹,并在其中创建一个名为 `tests` 的文件夹,用于存放测试用例。 - 在项目文件夹中创建一个名为 `conftest.py` 的文件,用于存放共享的测试配置和夹具。 3. 编写测试用例: - 在 `tests` 文件夹中创建一个名为 `test_example.py` 的文件,用于编写测试用例。 - 导入必要的依赖模块,如 pytest 和 selenium。 - 编写测试函数,使用 pytest 的装饰器 `@pytest.mark.parametrize` 定义参数化的测试用例。 - 在测试函数中通过 Selenium WebDriver 实例化浏览器,并执行相应的操作和断言。 4. 配置夹具: - 在 `conftest.py` 中使用 pytest 的 `fixture` 装饰器定义夹具函数。 - 夹具函数可以在测试用例中被调用,以提供预置条件或资源。 - 例如,可以创建一个 `driver` 夹具,用于在每个测试用例之前启动浏览器,并在测试完成后关闭浏览器。 5. 运行测试用例: - 在项目根目录下打开终端,并运行 `pytest` 命令来运行所有的测试用例。 - 使用命令行参数可以指定运行特定的测试用例,如 `pytest -k test_example`,将只运行名称中包含 "test_example" 的测试用例。 这些是 Selenium pytest 项目实战的一些基本笔记,希望能对你有所帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值