常用的模型大小评估指标

1.计算量

影响推理速度

2.参数量

不直接影响模型推理性能

直接影响软件包的大小(影响部署)

3.访存量:模型计算时所需访问存储单元的字节大小

对推理速度至关重要

​​​​​​​影响模型推理速度的因素

模型在特定硬件上的推理速度,除了受计算量影响外,还会受访存量、硬件特性、软件实现、系统环境等诸多因素影响,呈现出复杂的特性。

1.运行平台不同(不同配置、同配置不同电脑)

2.不同深度学习框架

3.不同的复现版本

4.并行化程度,并行程度高的推理快

5.内存访问率,访问率高的推理时间长(可以理解为多次读取内存)

6.同步等待,模型分支较多,需要等待所有支路计算完毕后进入下一步计算。支路多的,推理时间长。

参考大佬的文章:深度学习模型大小与模型推理速度的探讨_Tom Hardy的博客-CSDN博客

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱学习的大志

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值