1.计算量
影响推理速度
2.参数量
不直接影响模型推理性能
直接影响软件包的大小(影响部署)
3.访存量:模型计算时所需访问存储单元的字节大小
对推理速度至关重要
影响模型推理速度的因素
模型在特定硬件上的推理速度,除了受计算量影响外,还会受访存量、硬件特性、软件实现、系统环境等诸多因素影响,呈现出复杂的特性。
1.运行平台不同(不同配置、同配置不同电脑)
2.不同深度学习框架
3.不同的复现版本
4.并行化程度,并行程度高的推理快
5.内存访问率,访问率高的推理时间长(可以理解为多次读取内存)
6.同步等待,模型分支较多,需要等待所有支路计算完毕后进入下一步计算。支路多的,推理时间长。