[深度学习论文笔记]CANet: Context Aware Network for Brain Glioma Segmentation 用于脑胶质瘤分割的上下文感知网络

[深度学习论文笔记]CANet: Context Aware Network for Brain Glioma Segmentation
CANet:用于脑胶质瘤分割的上下文感知网络

Published in: IEEE Transactions on Medical Imaging
论文:https://arxiv.org/abs/2007.07788
代码:https://github.com/ZhihuaLiuEd/canetbrats

摘要:
       脑胶质瘤的自动分割在诊断决策、进展监测和手术计划中起着积极的作用。基于深度神经网络的脑胶质瘤分割技术已被广泛应用。然而,这些方法缺乏强有力的策略来整合肿瘤细胞及其周围环境的上下文信息,这已被证明是处理局部模糊的基本方法。在这项工作中,作者提出了一种新的脑胶质瘤分割方法,称为上下文感知网络(CANet)。CANet从卷积空间和特征交互图中获取具有上下文的高维和鉴别特征。作者又进一步提出了上下文引导的注意条件随机场可以选择性地聚合特征。作者使用可公开访问的脑胶质瘤分割数据集BRATS2017、BRATS2018和BRATS2019来评估方法。实验结果表明,在训练集和验证集上,在不同的分割度量下,该算法与现有的几种分割方法相比具有更好的性能。

问题动机:
       脑胶质瘤是成人脑肿瘤中最常见的一种,具有致命的健康损害影响和高死亡率。为了为早期诊断、手术计划和术后观察提供足够的证据,多模式磁共振成像(MRI)(如T1、T1伴增强(T1ce)、T2和液体衰减反转恢复(FLAIR))是一种广泛应用的诊断技术,可提供可重复的、无创的测量。包括结构、解剖和功能特征
       医学图像分割为医学专业人员实现疾病诊断、肿瘤生长监测、治疗规划和随访服务提供基础性指导和定量评价。图1显示了脑胶质瘤分割任务的概述。
在这里插入图片描述
       图1:BraTS17多模态图像切片的例子与真实标签和网络的分割结果。在该图中,绿色代表增强肿瘤(数字标记2),黄色代表水肿(数字标记1),红色代表坏死和非增强Tumor Core (NCR\ECT,数字标记4)。

       然而, 手工细分需要专业知识,往往是耗时和劳动密集型的。以往的脑胶质瘤自动分割方法都是基于传统的机器学习算法,这种算法强烈依赖手工制作的特征,如纹理和局部直方图。然而,找到最好的手工制作特征或最佳特征组合是不现实的。近年来,深度学习技术特别是深度卷积神经网络(deep convolutional neural network, DCNN)被应用于从数据中有效学习高维判别特征,并被广泛应用于各种医学成像任务。
       类间模糊是脑胶质瘤分割中常见的问题。由于不同类别的体素可能共享相似的强度值或特征表示,因此如果只考虑孤立的体素,就很难实现精确的密集体素分割(问题)。为了解决这一问题,作者的目标是通过探索胶质瘤细胞与周围环境的特征交互图来了解它们之间的关系信息。作者在这里提出了一个上下文感知网络,即CANet,以实现精确的密集体素脑胶质瘤MRI图像分割。

本文的主要贡献是:
1) 提出一种新的脑胶质瘤分割方法,引入特征交互图推理作为一个并行的辅助分支来建模胶质瘤细胞与周围环境的关系。中间特征表示在自定义上下文引导的注意条件随机场(CGA-CRF)框架中进一步开发和聚合。据我们所知,这是第一次在脑胶质瘤分割中结合相关信息生成的特征。(上下文感知、特征聚合)
2) 将提出的CGA-CRF推论的平均场近似表述为卷积操作,而CGA-CRF实现为顺序的深度神经网络层。公式展示了所提议的CGACRF的泛化能力,它可以无缝嵌入任何深度神经架构,以实现端到端训练(泛化能力强)
3) 进行了广泛的评估,以证明在多模式脑肿瘤图像分割挑战(BraTS)数据集的不同评估指标下,提出的方法优于几种最先进的方法,即BraTS2017、BraTS2018和BraTS2019。

思路来源:
        基于最近成功的深度神经网络和概率图形模型,作者构建了新的脑胶质瘤分割方法。作者对相关的方法进行简要的回顾,将其分为脑胶质瘤分割基于条件随机场结合卷积神经网络的语义分割医学图像分析中的图神经网络三个子领域。
       大脑神经胶质瘤分割:早期的脑胶质瘤分割研究主要采用传统的机器学习算法,如聚类、随机决策森林、贝叶斯模型、图切等。Shin使用稀疏编码生成水肿特征,Kmeans用于肿瘤体素聚类。然而,如何优化编码字典的大小是一个棘手的问题。Pereira等人使用随机决策森林对体素标签进行分类,这严重依赖手工特征和复杂的后处理。Corso等人使用贝叶斯公式将软模型分配纳入亲和度计算。该方法考虑了多尺度特征的加权聚合,忽略了不同尺度之间的关系。Wels等人提出了一种基于图切割的方法来学习肿瘤分割的最优图表示,从而获得了更好的性能。然而,该方法对于密集的分割任务需要较长的推理时间,因为其图中的顶点数量与体素数量成正比。Konukoglu等人和Menze等人将反应扩散为基础的生物物理肿瘤生长框架用于胶质瘤分割。前者侧重于构建单一时间实例的辐射浸润边界,后者侧重于在经度数据上形式化宏观肿瘤生长模型。然而,这两种方法都需要详细的领域知识来定义参数,这限制了它们方法的泛化性能。

模型方法:
        首先详细描述了所提出的特征交互图。然后作者引入了新的特征融合模块CGA-CRF,它可以选择性地聚合来自不同上下文的特征,并学习生成最优的特征。最后,将CGA-CRF中的平均场更新描述为序列卷积操作,使网络实现端到端训练。所提出的分割框架如图2所示。补充B总结了作者提议的CANet的训练步骤。
在这里插入图片描述
                                   图2:提出的上下文感知网络的结构
        与之前的工作不同的是,提出的CANet可以通过对特征交互图进行推理来隐式捕获长期的关系信息,这在文献中还没有得到充分的研究。这两个上下文(特征交互图和卷积)都使用来自共享编码器主干的中间特征映射X∈RN×C作为输入,其中N=H×W×D为中间特征映射中的特征实例总数。C是特征维数。图上下文在特征交互图空间XG∈RN×C中生成表示,卷积生成坐标空间表示XC∈RN×C。
        CGA-CRF设计的主要理念是利用最终表示XF∈RN×C和中间特征表示X与辅助长程关系信息XG之间的关系,生成与MRI图像相关联的最优分割图。生成的交互空间具有其卷积特性XC,不同于直接连接XF= concat(X, XG, XC)或元素求和XF= X +XG+XC,作者的目标是通过一个新的条件随机场学习一组潜在特征表示XF。由于XC和XG在学习XF过程中可能做出不同的贡献,作者采用了注意机制的想法,并将其推广到CRFs的门节点。门节点可以调节信息流,发现不同上下文和潜在特征之间的关联。(公式字母不太规范,详情请参考具体论文)

A.背景引导特征提取:
1)图上下文:自适应采样投影
        首先利用收集到的特征图创建特征交互空间,构造交互图G = {V, E, a},其中V表示交互图中节点的集合,E表示交互节点之间的边,a表示邻接矩阵。给定一个学习到的高维特征X = {xn}N n=1∈RN×C和来自主干网络的Xn∈R1×C,首先将原始特征投影到特征交互空间上,生成投影特征XPROJ= {xproj N}N n=1∈RK×C’。K为交互图中交互节点的个数,C’为交互空间维数。简单的方法产生每个元素xproj n∈XPROJ, n ={1,…, K}使用其相邻元素的线性组合:
在这里插入图片描述
       其中Nn相邻体素n。朴素方法通常采用具有冗余连接和交互节点间参数的全连通图,很难进行优化。更重要的是,线性组合方法缺乏自适应采样的能力,因为不同的图像包含不同的脑胶质瘤上下文信息(如位置、大小和形状)。作者采用自适应采样策略来解决这个问题:
在这里插入图片描述
       其中wnm∈R3×(K×C)和bnm∈R3×1are为每个原始特征Xn通过随机梯度得体单独学习的移位距离。ρ()是一个三线性插值采样器,在已知变形△m和交互图节点V的全部集合的情况下,对特征节点xm周围移位的特征节点进行采样。

特征交互图推理:
        将输入特征投影到交互图G上,K个特征节点V = {v1,…, vk}和边E,遵循图卷积网络的定义。其中,定义AG为K×K节点上的图邻接矩阵,WG∈RD×D为权值矩阵,图的卷积运算公式如下:
在这里插入图片描述
       其中σ()为sigmoid激活函数。首先应用拉普拉斯平滑并更新(I−AˆG)的邻接矩阵,以便将节点特征传播到整个图中。在实践中,使用1×1卷积层实现AˆG 和 WG。还实现了I作为剩余连接,使梯度流最大化。

2)卷积上下文分支:卷积上下文分支由编码器和解码器组成,二者之间有跳跃连接。编码器降低了特征图的空间维数,而扩展路径恢复了特征图的空间维数和对象的细节。该体系结构的优点之一是充分利用了上下文信息不同尺度的特征,大尺度特征可以用来定位对象,小尺度高维特征可以为分类提供更详细、更准确的信息

       而带有3D核的网络在特征提取时需要学习的参数更多。据观察,这种3D模型的训练往往会因为各种原因而失败,如过拟合、梯度消失或爆炸等。为了解决上面提到的问题,作者部署了一个深度监督机制来更好地训练卷积上下文分支。提出的深度监督机制强化了梯度流,提高了识别能力。

       具体来说,使用额外的上采样层,以最终输出的分辨率重塑在深度监督层创建的特征。对于每个变换层,应用softmax函数来获得额外的密集分割图。对于这些额外的分割结果,计算了与地面真实分割图相关的分割误差。将辅助损耗与整个网络输出层的损耗相结合,在训练阶段的每次迭代中进一步反向传播梯度进行参数更新。

B. 引导注意CRF融合模块:
        进一步提出了一个新的情境引导注意CRF模块来进行特征融合,其动机来自两个方面。提出的CGA-CRF的图模型如图3所示。使用CGA-CRF进行特征融合有两个原因。首先,通过最大化概率分配分割标签可能会由于相邻体素共享相似的特征表示而导致错误的边界分割;其次,以往的作品采用通道级联或元素求和机制,融合不同来源的特征。但是,这些机制简化了不同源特征图之间的关系,可能导致信息丢失。与以往的相关工作不同,作者利用概率图形模型的推理能力,采用条件随机场模型来学习最优的潜在融合特征。由于来自不同情境的信息可能对最终结果有不同程度的影响,作者整合了CGA-CRF的注意门,以调节特征之间的信息流动。作者还进一步展示了使用顺序卷积操作的CGA-CRF均值场更新的实现,这使得CGA-CRF融合模块可以作为顺序层与任何神经网络集成,并以端到端方式进行训练。与以往的编码器-解码器神经网络(图3 (a))和多尺度神经网络(图3 (b))相比,提出的CGA-CRF(图3 (d))具有较强的推理能力,可以共同学习神经网络主干编码的特征隐藏表示。提高了分割模型的泛化能力。与之前的架构如多尺度CRF(图3 ©)相比,提出的CGA-CRF模型首先通过直接建模网络中的成本能量使用注意门(Eq.(7))。因此,注意门通过最小化总能量成本,调节从主干神经网络编码的特征到潜在表示的信息流。
在这里插入图片描述
       图3:先前特征融合方案的图形模型说明:(a)基本编码器-解码器神经网络,(b)多尺度神经网络,(c)多尺度CRF,以及(d)提出的上下文引导注意CRF。I表示输入的3D MRI图像。S表示特定的要素比例。XC和XGRE分别表示卷积运算和图卷积实践产生的隐藏特征。AGC表示从相应的功能XC和XG生成的注意图。最好是彩色的。

3) CGA-CRF推理作为卷积操作:将CGA-CRF的平均场更新作为顺序卷积操作实现,以便CGA-CRF可以在任意神经网络中以端到端方式进行训练。

实验设置:
       为了证明所提出的CANet对脑胶质瘤分割的有效性,作者在三个公开可用的数据集上进行了实验:多模态脑肿瘤分割挑战2017 (BraTS2017)、多模态脑肿瘤分割挑战2018 (BraTS2018)和多模态脑肿瘤分割挑战2019(brats 2019)。

       数据集:本次评估包括训练集的285例患者和验证组的44例患者。BraTS2018与BraTS2017共享相同的训练集,并且在验证集中包括66个案例。BraTS2019将训练集扩展到335个案例,将验证集扩展到125个案例。每个病例由四个磁共振序列组成,即自然T1加权(T1)、对比后T1加权(T1ce)、T2加权(T2)和流体衰减反转恢复(FLAIR)。每个序列的三维磁共振成像体积为240×240×155。训练集中只提供了基础真值标注,包含背景和健康组织(标签0)、坏死和非增强肿瘤(标签1)、瘤周水肿(标签2)和GD增强肿瘤(标签4)。首先考虑训练集上的5重交叉验证,其中每个重包含(通过随机划分)228个用于训练的案例和57个用于验证的案例。然后,在验证集上评估所提出方法的性能。从比赛的官方服务器生成验证结果,以确定所提出的方法的分割精度。
评估指标:分割精度分别通过Dice评分、灵敏度、特异性和Hausdorff95距离来衡量。
在这里插入图片描述
其中P代表模型预测,T代表地面真实标注。t1和t0是预测为肿瘤区域的阳性和阴性的子集体素。对P1和P0也进行了类似的设置。此外,Hausdorff95在将模型预测与地面真实分割进行比较时测量距离。sup代表上确界,inf代表下确界。对于每个度量,分别评估三个区域,即增强肿瘤(ET,标记1)、全肿瘤(WT,标记1、2和4)和肿瘤核心(TC,标记1和4)。

实验与结果:
       首先对方法进行消融实验,以显示构建特征交互图和CGA-CRF对分割性能的有效影响。还对CGA-CRF中的编码器主干和不同的近似迭代次数进行了广泛的分析。然后,在不同的数据集上比较了网络方法和几种最先进的方法。最后,给出了失效案例的分析。

A.消融研究:
       首先评估构建特征交互图和CGA-CRF功能衰竭的影响。为此,作者对BraTS2017训练集进行5倍交叉评估,并报告平均结果。表1显示了定量结果,而定性结果可以在图5中找到,作为分割输出的例子。作者从两条基线开始,第一个基线是完全卷积网络,对骨干卷积编码器(CC)进行深度监控。第二个基线仅使用卷积编码器中建议的交互图,而没有深度监督。然后,评估了所提出的(整个)CANet系统(CC+GC),该网络具有来自CC和GC的级联特征映射,而没有任何附加的特征融合方法。最后,评估了所提出的特征融合模块CGA-CRF,该模块获取不同上下文的特征图,并输出最优的潜在特征图用于最终的分割。对于表1所示的实验,使用UNet的编码器作为主干网络,在CGA-CRF中进行了5次迭代。后面描述的实验包括对具有迭代次数的不同主干的分析。
在这里插入图片描述
       从表1中,观察到GC获得了比CC更好的性能。对于dice评分,GC对整个肿瘤达到0.894,对肿瘤核心达到0.822。CC只在整个肿瘤上获得0.875的dice评分,在肿瘤核心上获得0.821的dice评分,分别比GC的评分低2%和0.2%。对于hausdorff95,GC在整个肿瘤上达到6.403,在肿瘤核心上达到5.812。CC达到6.886和7.939,分别比GC在整个肿瘤和肿瘤核心上高0.493和2.127。从图5中,可以观察到GC可以准确预测单个区域。例如,增强的肿瘤区域通常不出现在肿瘤区域的外部。这种优越的性能可能受益于特征交互图中学习的信息,因为不同肿瘤区域的特征节点之间具有强的结构关联。学习这种关系可以帮助系统预测肿瘤区域的正确标记。以表一为例,GC的敏感性评分高于CC:增强肿瘤高12.02%,全肿瘤高4.469%,肿瘤核心高8.104%。观察到在NCR/ECT区域的分割结果很差,不如图5所示的地面真实情况的结果。
图五

        然后,用CC和GC同时提取的特征图评估完整的CANet。采用朴素级联方法融合CC和GC的特征图,过分割结果较少。如表一所示,CC+GC的灵敏度远低于GC。CC+GC对增强肿瘤的敏感性为0.857,对全肿瘤的敏感性为0.922,对肿瘤核心的敏感性为0.861。从图5中,见证了通过引入特征交互图,分割模型可以校正一些由CC产生的误分类区域。然而,串联融合方法并没有表现出对整体分割性能的任何益处。CC+GC的全瘤骰子评分为0.861,肿瘤核心dice评分为0.803,分别比GC低3.292%和1.94%。还观察到图5所示的边界信息的丢失,特别是NCR/ECT和GD增强肿瘤的边界与GC和CC相比过度缩小。

       最后,评估了提出的CGA-CRF的有效性。通过引入CGA-CRF融合模块,的分割模型优于其他方法。得益于CGA-CRF的推理能力,它给出了令人满意的分割输出。对于整个肿瘤和肿瘤核心来说,其Dice得分分别为0.903和0.873,得分最高,它的Hausdorff95也是最低的。对于整个肿瘤和肿瘤核心,其hausdorff95值分别为3.569和4.036。参考表1中报告的低得多的灵敏度分数,得出结论,完整的CANet已经实现了卓越的性能。从图5中可以得出相同的结论,其中CGA-CRF可以检测到有利于下游去卷积网络的最佳特征图,并勾勒出小肿瘤核心和边缘,当在编码器主干中使用下采样操作时,这些可能会丢失。

主干网络测试:
       评估不同编码器主干的有效性。为此,作者在带有完整CC+GC和5迭代CGA-CRF的BraTS2017训练集上使用了5倍交叉验证。作者在这里选择最先进的编码器主干,例如VGG16、ResNet18、ResNet30、ResNet50和UNet编码器路径。对于每个主干,将来自最后一个卷积块的特征图馈送到特征交互图分支,以提取交互图上下文并将来自第二个最后卷积块的特征图馈送到卷积分支,以生成深度监督特征图。实践证明,这种做法有效、高效、简单。关于Dice和Hausdorff95的分割结果如图8所示。ResNet优于VGG16,主要是因为涉及到剩余连接和批量标准化。然而,与ResNet和UNet的编码器相比,UNet的编码器由于多尺度特征映射和跳过连接进行特征融合,在Dice和Hausdorff95方面获得了更好的分割性能。在作者的方法中,选择UNet的编码器作为最终分割模型的主干网络。
在这里插入图片描述

       图8。不同编码器主干的性能比较:(a)和(b)分别通过使用不同编码器主干对BraTS2017训练集进行交叉验证,表明与dice分数和Hausdorf95的比较。

迭代测试:
        手动设置CG-ACRF平均场近似中的迭代次数。由于平均场近似只能保证局部最优,作者考察了不同迭代次数的结果。表二报告了使用不同迭代次数(即1、3、5、7和10)的定量结果。随着迭代次数的增加,提出的模型表现得更好。然而,可以观察到,当迭代次数超过5时,无法获得额外的性能优势。图6呈现了分割期间的概率图,其中浅色代表具有较低概率的区域,而深色代表具有较高概率的区域。可以观察到,仅使用一次迭代,CANet就可以使用融合的特征图来勾勒出感兴趣的区域。通过将迭代次数增加到3或5,CG-ACRF可以逐渐提取最佳特征图,从而实现精确分割。进一步将迭代次数增加到7和10,但没有进一步改进。因此,将迭代次数设置为5,作为分割性能和使用的参数数量之间的有效折衷。
在这里插入图片描述
       表2:关于DICE、敏感性、特异性和HAUSDORFF95,通过CG-ACRF平均场近似对BRATS2017训练集进行五次交叉验证,得出不同迭代次数的定量结果。最佳结果以粗体显示,亚军结果以下划线显示。

在这里插入图片描述
                                          图6:不同迭代次数生成得到的注意力图

B.与最先进方法的比较:
        选择了几种最先进的基于深度学习的脑胶质瘤分割方法,包括3D UNet、注意力UNet、PRunet、nnunet和3DESPNet。首先考虑使用BraTS2017训练集进行5倍交叉验证。每个文件夹包含随机选择的228个训练案例和57个验证案例。在这些交叉验证实验中,考虑了消融测试中的最佳性能,选择具有5次迭代的CC+GC和CGA-CRF融合模块的CANet。如表三所示, CANet在几个指标上优于其他最先进的方法,而所提出的方法的结果与其他指标相比具有竞争力。CANet对整个肿瘤和肿瘤核心的Dice评分分别为0.903和0.873,其中前者比个人亚军成绩高8%,后者高3%。CANet对整个肿瘤和肿瘤核心的Hausdorff95值分别为3.569和4.036,远低于亚军,分别为4.156和5.778。基于官方评估服务器生成的个人评分,作者认为提出的CANet中ET的dice评分受到数据不平衡问题的影响。增强肿瘤的评估只考虑肿瘤周围水肿的预测,这种水肿只存在于高级别胶质瘤(HGG)患者中。由于训练集中包含的HGG病例比LGG(低级别胶质瘤)病例多,网络可能会在验证中学习到一个偏差,并对某些LGG病例做出不准确的预测,因为HGG病例包含预测肿瘤周围水肿标签的假阳性。这种假阳性预测导致ET评分为0,而不是LGG病例的1,因此降低了网络的性能。
在这里插入图片描述
       表3:通过对BRATS2017训练集的DICE、敏感性、特异性和HAUSDORFF交叉验证,最新模型的定量结果。最佳结果以粗体显示,亚军结果以下划线显示。

       为了进一步评估分割输出,作者将所提出方法的分割输出与地面真实值进行比较。图7显示,所提出的CANet可以有效地预测正确的区域,包括小肿瘤核心和复杂边缘,而其他现有技术方法无法做到这一点。
       与其他方法相比,提出的方法使用较少的时间收敛到较低的训练损失。利用强大的特征交互图和提出的融合模块CGA-CRF,CANet实现了令人满意的脑胶质瘤轮廓。随着训练时间的增加,CANet对分割图进行微调,并成功地检测出小肿瘤的核心和边界。作者在图9中展示了提出的CANet和3D UNet的概率图。从图9可以看出, CANet可以定位目标肿瘤的形状轮廓以实现精确分割,而标准3D UNet可能导致不确定性,例如图9中的第一行(WT概率图)和最后一行(TC概率图)。此外,标准U-Net可能将健康环境误分类为肿瘤组织,例如图9中的第二行(WT概率图)和第三行(ET概率图)。
在这里插入图片描述
       图9:提出的CANet和3D UNet的分割概率图示例。从上到下的列表示不同的患者病例。从左到右的行分别表示FLAIR数据、地面真相标注、CANet在CG-ACRF中经过5次迭代生成的注意图和3D UNet生成的注意图。
       作者进一步研究了BraTS2017、BraTS2018和BraTS2019验证集的分割结果,其中每个患者病例的定量结果都是从在线评估服务器生成的。对于BraTS2017验证集,提出的具有完整CC+GC和5次迭代CGA-CRF的CANet在单模型分割基准中实现了ET上平均dice分数、TC和ET上平均Hasdorff95分数的最新结果。CANet在ET上的dice为0.728,标准偏差为0.286,高于报告的方法。CANet在TC上的dice分数为0.821,高于亚军结果。CANet ET的Hausdorff95为5.496,远低于亚军。对于BraTS2018验证集,提出的CANet在肿瘤核心上实现了Hausdorff95的最新结果,即7.674,而其他结果均为亚军。Myronenko提出的方法在使用大多数评估指标时具有最佳性能,在Myronenko的方法中,他们建立了一个额外的分支,即使用自动编码器通过重建输入的3D MRI图像来调整编码器主干,这个自动编码器分支极大地增强了主干编码器的特征提取能力。(3d mri brain tumor segmentation using autoencoder regularization“基于自编码正则化的3d-mri脑肿瘤分割”)
        即使为平均场近似添加额外的神经块,网络的参数也很适合该网络。作者在表IV和表V中报告了提出的模型和其他候选基线的参数大小。与其他基线方法与其他网络相比,CANet将参数大小保持在中等水平。训练网络200个epoches,批量大小为2,训练时间为27小时。出于评估目的,网络在0.88秒内执行每个案例。

总结:
       作者提出了一种新的3D MRI脑胶质瘤分割方法CANet。考虑到标准卷积和图卷积的不同上下文信息,提出了一种结合深度监督卷积和图卷积上下文的混合上下文感知特征提取方法。与以往使用元素求和或通道连接等简单特征融合方案的工作不同,本文设计了一种基于条件随机场的新特征融合模型,称为上下文引导注意条件随机场(CGA-CRF),有效地学习下游分割的最佳潜在特征。此外,将CGA-CRF中的平均场近似表示为卷积运算,将CGA-CRF合并到分割网络中以执行端到端训练。进行了大量的实验来评估所提出的特征交互图方法、CGA-CRF和完整的CANet框架的有效性。结果表明,提出的CANet通过几个评估指标达到了最先进的结果。在未来,作者认为结合所提出的网络与新的训练方法,可以更好地处理数据集中的不平衡问题。

              点个关注吧~

  • 4
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Slientsakke

觉得不错的话,点赞鼓励一下吧☺

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值