深度学习之医学图像分割论文
文章平均质量分 88
深度学习医学图像分割论文解读
Slientsakke
这城市每天都能让你灰头土脸
但总有人能让沙漠里开出蔷薇
展开
-
[深度学习论文笔记]Hybrid Window Attention Based Transformer Architecture for Brain Tumor Segmentation
受Transformer用于体积脑肿瘤分割的最新进展的启发,以及它在基于卷积神经网络(CNN)的模型上的独特能力,作者提出了一种u形编码器-解码器神经网络,该网络在解码过程中采用双向窗口方法进行精细细节提取。考虑到Transformer网络的这些方面,在作者提出的方法中,使用了两种流行的基于窗口的注意机制,即基于十字形窗口注意的Swin Transformer块和基于移位窗口注意的Swin Transformer块来构造u形体积Transformer(CR-Swin2-VT)。原创 2023-06-12 16:06:10 · 681 阅读 · 0 评论 -
[深度学习论文笔记]Multimodal CNN Networks for Brain Tumor Segmentation in MRI
自动分割对于胶质瘤患者的脑肿瘤诊断、疾病预后和后续治疗至关重要。然而,由于扫描仪和成像协议的多样性,在多模态MRI中准确检测胶质瘤及其子区域是非常具有挑战性的。原创 2023-03-02 15:33:21 · 1381 阅读 · 5 评论 -
[深度学习论文笔记]医学图像分割U型网络大合集
U型网络大合集原创 2022-08-12 19:34:54 · 3586 阅读 · 0 评论 -
[深度学习论文笔记]使用多模态MR成像分割脑肿瘤的HNF-Netv2
HNF-Netv2 for Brain Tumor Segmentation using multi-modal MR Imaging使用多模态MR成像分割脑肿瘤的HNF-Netv2Published : Jan 2022原创 2022-07-03 22:28:10 · 2904 阅读 · 2 评论 -
[深度学习论文笔记]TransBTSV2: Wider Instead of Deeper Transformer for Medical Image Segmentation
TransBTSV2: Wider Instead of Deeper Transformer for Medical Image SegmentationTransBTSV2:用于医学图像分割的宽Transformer代替深Transformer原创 2022-06-27 20:45:01 · 2182 阅读 · 1 评论 -
[深度学习论文笔记]UCTransNet:从transformer的通道角度重新思考U-Net中的跳跃连接
UCTransNet:从transformer的通道角度重新思考U-Net中的跳跃连接原创 2022-06-23 13:29:20 · 13626 阅读 · 18 评论 -
[深度学习论文笔记]Cross-Modality Deep Feature Learning for Brain Tumor Segmentation
Cross-Modality Deep Feature Learning for Brain Tumor Segmentation跨通道深度特征学习在脑肿瘤分割中的应用Published : Pattern Recognition 2021论文:https://arxiv.org/abs/2201.02356代码: 机器学习和数字医学图像的流行,为利用深度卷积神经网络解决具有挑战性的脑肿瘤分割(BTS)任务提供了机会。然而,与广泛应用的RGB图像数据不同,用于脑肿瘤分割的医学图像数据在数据尺度上原创 2022-05-01 14:53:40 · 1184 阅读 · 0 评论 -
[深度学习论文笔记]Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer
UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with TransformerUCTransNet:从transformer的通道角度重新思考U-Net中的跳跃连接Published : AAAI 2022论文:https://arxiv.org/abs/2109.04335代码:https://github.com/mcgregorwwww/uctransnet摘要:原创 2022-04-30 10:23:42 · 1956 阅读 · 0 评论 -
Extending nn-UNet for brain tumor Segmentation 扩展nn-UNet用于脑肿瘤分割
Extending nn-UNet for brain tumor Segmentation扩展nn-UNet用于脑肿瘤分割Pattern Recognition on November 01, 2021论文:https://arxiv.org/abs/2111.13300code:https://github.com/rixez/Brats21_KAIST_MRI_Labhttps://hub.docker.com/r/rixez/brats21nnunet摘要: 脑肿瘤的分割对胶质瘤的诊原创 2022-04-17 21:34:33 · 5123 阅读 · 0 评论 -
[深度学习论文笔记]UNETR: Transformers for 3D Medical Image Segmentation
解码器的选择:在表3中,通过比较UNETR和其他解码器架构在两个MRI和CT模式的代表性分割任务上的性能来评估解码器的有效性。虽然这种基于FCN的方法具有强大的表示学习能力,但它们在远程依赖学习中的表现,仅限于它们的局部接受域。同样,将三维输入体积 ,分辨率(H,W,D)和C输入通道划分为平坦的均匀非重叠斑块 ,创建一个一维序列,其中(P, P, P)表示每个patch的分辨率, 为序列的长度。此外,在小器官的分割中,在胆囊和肾上腺的Dice评分方面,方法显著优于第二最佳基线的6.382%和6.772%。原创 2022-03-30 08:17:31 · 21497 阅读 · 5 评论 -
[深度学习论文笔记]A Volumetric Transformer for Accurate 3D Tumor Segmentation
A Volumetric Transformer for Accurate 3D Tumor Segmentation用于精确三维肿瘤分割的体积TransformerPublished: 2021Pattern Recognition on November 01, 2021论文:https://arxiv.org/abs/2111.13300代码:https://github.com/himashi92/VT-UNet摘要: 提出了一种用于3D医学图像分割的Transformer架构。为体原创 2022-03-22 18:17:49 · 4687 阅读 · 3 评论 -
[深度学习论文笔记]A Tri-attention Fusion Guided Multi-modal Segmentation Network
A Tri-attention Fusion Guided Multi-modal Segmentation Network一种三注意力融合引导的多模态分割网络Published: 2 Nov 2021Pattern Recognition 2021论文: https://arxiv.org/abs/2111.01623摘要: 在多模态分割领域,可以考虑不同模态之间的相关性来提高分割结果。考虑到不同磁共振模态之间的相关性,本文提出了一种基于新型三注意力融合的多模态分割网络。网络包括具有N个图像原创 2022-03-17 13:29:01 · 5944 阅读 · 4 评论 -
[深度学习论文笔记]Modality-aware Mutual Learning for Multi-modal Medical Image Segmentation
Modality-aware Mutual Learning for Multi-modal Medical Image Segmentation多模态医学图像分割中的模态感知互学习Published: Jul 2021MICCAI 2021论文:https://arxiv.org/abs/2107.09842代码:https://github.com/YaoZhang93/MAML摘要: 肝癌是全世界最常见的癌症之一。由于肝脏肿瘤的纹理变化不明显,对比增强计算机断层扫描(CT)成像对肝癌的原创 2022-03-11 08:03:52 · 2279 阅读 · 1 评论 -
[深度学习论文笔记]Tumor attention networks: Better feature selection, better tumor segmentation
Tumor attention networks: Better feature selection, better tumor segmentation肿瘤注意网络:更好的特征选择,更好的肿瘤分割原创 2022-03-05 09:27:15 · 1886 阅读 · 0 评论 -
[深度学习论文笔记]Pairwise Learning for Medical Image Segmentation
[深度学习论文笔记]Pairwise Learning for Medical Image Segmentation医学图像分割的成对学习Published: October 2020Published in: Medical Image Analysis 论文:https://www.sciencedirect.com/science/article/abs/pii/S1361841520302401代码:https://github.com/renzhenwang/pairwise_segm原创 2022-02-27 16:27:45 · 2636 阅读 · 1 评论 -
[深度学习论文笔记DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datasets
DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datasetsDoDNet:学习从多个部分标记数据集中分割多器官和肿瘤Jul 2021CVPR 2021论文:https://arxiv.org/abs/2011.10217代码: https://github.com/jianpengz/DoDNet摘要: 由于在体素水平标注3D医学图像需要大量的劳动力和专业知识,大多数基准原创 2022-01-14 14:42:31 · 5703 阅读 · 9 评论 -
[深度学习论文笔记]Multi-phase Liver Tumor Segmentation with Spatial Aggregation
Multi-phase Liver Tumor Segmentation with Spatial Aggregation and Uncertain Region Inpainting[深度学习论文笔记]基于空间聚集和不确定区域修复的多期肝脏肿瘤分割Jul 2021MICCAI 2021论文:https://arxiv.org/abs/2108.00911代码:https://github.com/yzhang-zju/multi_phase_LiTS摘要: 多期计算机断层扫描图像为准确分原创 2022-01-02 11:31:37 · 4087 阅读 · 9 评论 -
[深度学习论文笔记]CANet: Context Aware Network for Brain Glioma Segmentation 用于脑胶质瘤分割的上下文感知网络
[深度学习论文笔记]CANet: Context Aware Network for Brain Glioma SegmentationCANet:用于脑胶质瘤分割的上下文感知网络Published in: IEEE Transactions on Medical Imaging论文:https://arxiv.org/abs/2007.07788代码:https://github.com/ZhihuaLiuEd/canetbrats摘要: &nbs原创 2021-12-06 20:17:25 · 2966 阅读 · 3 评论 -
[深度学习论文笔记]3D AGSE-VNet: An Automatic Brain Tumor MRI Data Segmentation Framework
3D AGSE-VNet: An Automatic Brain Tumor MRI Data Segmentation Framework3D-AGSE-VNet:一种自动脑肿瘤MRI数据分割框架Published: Jul 2021Abstract by BMC Medical Imaging论文:https://arxiv.org/abs/2107.12046摘要: 脑胶质瘤是最常见的脑恶性肿瘤,发病率高,死亡率超过3%,严重危害人类健康。临床上获取脑肿瘤的主要方法是MRI。从多模态MR原创 2021-11-20 10:45:13 · 4532 阅读 · 0 评论 -
[深度学习论文笔记]CaraNet: Context Axial Reverse Attention Network for Segmentation of Small Medical Objects
CaraNet: Context Axial Reverse Attention Network for Segmentation of Small Medical ObjectsCaraNet:用于分割小医疗对象的上下文轴向反向注意网络Aug 2021论文:https://arxiv.org/abs/2108.07368代码:https://github.com/AngeLouCN/CaraNet摘要:准确可靠地分割医学图像对疾病的诊断和治疗具有重要意义。这是一项极具挑战性的任务,因为物体的大原创 2021-10-22 10:16:02 · 5584 阅读 · 0 评论 -
[深度学习论文笔记]Efficient embedding network for 3D brain tumor Segmentation
Efficient embedding network for 3D brain tumor Segmentation一种高效的脑肿瘤三维分割嵌入网络英国皇家医科大学Nov 2020Multimodal Brain Tumor Segmentation Challenge 2020 (BRATS) BrainLes 2020论文:https://arxiv.org/abs/2107.09842摘要: 基于深度学习的三维医学图像处理存在数据匮乏的问题。因此,与二维自然图像分析相关的工作相比,原创 2021-09-26 20:26:07 · 1337 阅读 · 0 评论 -
[深度学习论文笔记]Modality-aware Mutual Learning for Multi-modal Medical Image Segmentation
Modality-aware Mutual Learning for Multi-modal Medical Image Segmentation多模态医学图像分割中的模态感知互学习Published: Jul 2021MICCAI 2021论文:https://arxiv.org/abs/2107.09842代码:https://github.com/YaoZhang93/MAML摘要: 肝癌是全世界最常见的癌症之一。**由于肝脏肿瘤的纹理变化不明显,对比增强计算机断层扫描(CT)成像对原创 2021-09-18 16:35:07 · 1202 阅读 · 0 评论 -
[深度学习论文笔记]Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation
Swin-Unet: Unet-like Pure Transformer for Medical Image SegmentationSwin-Unet:用于医学图像分割的类Unet纯transformer论文:https://arxiv.org/abs/2105.05537代码:https://github.com/HuCaoFighting/Swin-Unet 得益于深度学习的发展,计算机视觉技术在医学图像分析中得到了广泛的应用。图像分割是医学图像分析的重要组成部分。特别是准确、鲁棒的医原创 2021-08-22 21:37:04 · 1844 阅读 · 1 评论 -
[深度学习论文笔记]Knowledge distillation from multi-modal to mono-modal segmentation networks从多模态到单模态分割的知识提取
Knowledge distillation from multi-modal to mono-modal segmentation networks从多模态分割网络到单模态分割网络的知识提取MICCAI 2020论文:https://arxiv.org/abs/2106.09564 近年来,多种成像方式联合应用于医学图像分割得到了广泛的研究。在几个应用中,相对于单模态分割,从不同模式的信息融合已经证明了提高分割精度。然而,由于医生和扫描仪数量有限,以及成本和扫描时间有限,在临床环境中获取多种模式原创 2021-08-22 21:07:00 · 1983 阅读 · 0 评论 -
[深度学习论文笔记]Brain tumor segmentation with self-ensembled,deeply-supervised 3D U-net neural networks
论文:Brain tumor segmentation with self-ensembled,deeply-supervised 3D U-net neural networks: a BraTS 2020 challenge solution.使用自集成、深度监督的3D U-net神经网络的脑肿瘤分割:BraTS 2020挑战解决方案论文:https://arxiv.org/abs/2011.01045代码:https://github.com/lescientifik/open brats20原创 2021-07-20 15:31:32 · 2623 阅读 · 0 评论 -
[深度学习论文笔记]Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement and Gated Fusion
Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement and Gated Fusion基于特征分离和门控融合的鲁棒多模式脑肿瘤分割Published: Feb 2020MICCAI 2019论文:https://arxiv.org/pdf/2002.09708摘要: 准确的医学图像分割通常需要有效地学习多模态数据中的互补信息。然原创 2021-07-11 21:23:00 · 1264 阅读 · 0 评论 -
[深度学习论文学习笔记]多模态融合的深度学习脑肿瘤检测方法
多模态融合的深度学习脑肿瘤检测方法论文:http://www.photon.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=22355摘要:针对目前传统方法脑肿瘤检测准确率低的问题,提出一种基于深度学习的三维脑肿瘤检测方法.首先将不同模态的脑肿瘤磁共振成像影像进行融合,获取不同模态下的脑肿瘤病灶三维空间特征;然后在卷积层和池化层之间增加实列归一化层,提高网络的收敛速度,缓解过拟合的问题;并对损失函数进行改进,采用加权损失函数加原创 2021-06-24 22:41:47 · 3435 阅读 · 4 评论 -
[深度学习论文笔记]Brain tumour segmentation using a triplanar ensemble of U-Nets 基于Unet三平面集成的脑肿瘤分割
Brain tumour segmentation using a triplanar ensemble of U-Nets基于U网络三平面集成的脑肿瘤分割Published: May 2021论文:https://arxiv.org/abs/2105.09511代码:https://github.com/askerlee/segtran摘要 脑胶质瘤在其外观和脑MR图像上的位置上都有很大的差异,这使得健壮的肿瘤分割非常具有原创 2021-06-14 20:33:43 · 1616 阅读 · 0 评论 -
[深度学习论文笔记] Medical Image Segmentation using Squeeze-and-Expansion Transformers
[深度学习论文笔记] Medical Image Segmentation using Squeeze-and-Expansion Transformers医用图像的压缩与扩展transformer分割Published: 2021 May论文:https://arxiv.org/abs/2105.09511代码:https://github.com/askerlee/segtran一、基本介绍1.问题动机医学图像分割是计算机辅助诊断的重要内容。好的分割要求模型同时看到大图和细部,即在保持高空原创 2021-06-04 18:57:24 · 1253 阅读 · 1 评论 -
[深度学习论文笔记]Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation
Swin-Unet: Unet-like Pure Transformer for Medical Image SegmentationSwin-Unet:用于医学图像分割的类Unet纯transformer论文:https://arxiv.org/abs/2105.05537代码:https://github.com/HuCaoFighting/Swin-Unet原创 2021-05-26 21:13:23 · 44986 阅读 · 76 评论 -
[深度学习论文笔记]A Two-Stage Cascade Model for MRI Brain Tumor Segmentation
[深度学习论文笔记] A Two-Stage Cascade Model with Variational Autoencoders and Attention Gates for MRI Brain Tumor Segmentation磁共振脑肿瘤分割的变分自动编码器和注意门两阶段级联模型论文:https://arxiv.org/abs/2011.02881代码:https://github.com/shu-hai/two-stage-VAE-Attention-gate-BraTS2020发表时原创 2021-05-18 20:36:43 · 1729 阅读 · 0 评论 -
[深度学习论文笔记]RA-UNet: A hybrid deep attention-aware network to extract liver and tumor in CT scans
RA-UNet: A hybrid deep attention-aware network to extract liver and tumor in CT scansRA-unet:一个混合的深度注意感知网络,用于在CT扫描中提取肝脏和肿瘤Published: ICONIP2019论文:https://arxiv.org/abs/1811.01328代码:https://github.com/RanSuLab/RAUNet-tumor-segmentation问题动机:  原创 2021-05-09 22:15:31 · 1547 阅读 · 1 评论 -
[深度学习论文笔记]3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation 从稀疏标注学习密集体分割
3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation3D-U-Net:从稀疏标注学习密集体分割Published: MICCAI 2016论文:https://arxiv.org/abs/1606.06650代码:https://github.com/lee-zq/3DUNet-Pytorch/问题动机:在生物医学数据分析中,3D数据是非常丰富的。用分割标签注释这些数据会很困难,因为只有二维切片可以在计算机原创 2021-05-03 14:48:49 · 3929 阅读 · 3 评论 -
[深度学习论文笔记] Inter-slice Context Residual Learning for 3D Medical Image Segmentation
[深度学习论文研读] Inter-slice Context Residual Learning for 3D Medical Image Segmentation基于层间上下文残差学习的三维医学图像分割论文:https://arxiv.org/abs/2011.14155v1代码: https://github.com/jianpengz/ConResNet发表时间:2020 IEEE-TMI一、基本介绍1.1问题动机自动化和精确的三维医学图像分割在帮助医学专业人员评估疾病进展和制定快速治疗原创 2021-04-21 14:56:02 · 1493 阅读 · 7 评论 -
[深度学习论文笔记]TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation
[深度学习论文解读] TransUNet: Transformers Make Strong Encoders for Medical Image SegmentationTransUNet:用于医学图像分割的Transformers强大编码器论文:https://arxiv.org/pdf/2102.04306代码:https://github.com/Beckschen/TransUNet发表时间:Feb 2021一、基本介绍1.1问题动机医学图像分割是开发医疗保健系统(尤其是疾病诊断和治原创 2021-04-14 21:49:14 · 11344 阅读 · 5 评论 -
[深度学习论文笔记] TransBTS: Multimodal Brain Tumor Segmentation Using Transformer 基于Transformer的多模态脑肿瘤分割
[深度学习论文解读] TransBTS: Multimodal Brain Tumor Segmentation Using Transformer基于Transformer的多模态脑肿瘤分割论文:https://arxiv.org/pdf/2103.04430代码:https://github.com/Wenxuan-1119/TransBTS发表时间:Mar 2021一、基本介绍1.1胶质瘤胶质瘤是最常见的恶性脑肿瘤,具有不同程度的侵袭性。在磁共振成像(MRI)上自动精确地分割这些恶性肿瘤原创 2021-04-05 22:21:48 · 7170 阅读 · 10 评论 -
[深度学习论文笔记] nnU-Net: Breaking the Spell on Successful Medical Image Segmentation(nnunet)
[深度学习论文解读] nnU-Net: Breaking the Spell on Successful Medical Image Segmentation(nnU-Net: 破除魔咒,一个成功的医学图象分割技术)Published:2019论文:https://arxiv.org/pdf/1904.08128v1.pdf论文:https://arxiv.org/pdf/1809.10486代码:https://github.com/MIC-DKFZ/nnunet一、基本介绍1.1历史背景原创 2021-03-28 21:58:51 · 2834 阅读 · 0 评论 -
[深度学习论文笔记] Non-local U-Net for Biomedical Image Segmentation 非局部Unet在生物医学图像分割中的应用
[论文解读] Non-local U-Net for Biomedical Image Segmentation非局部Unet在生物医学图像分割中的应用论文:https://arxiv.org/pdf/1812.04103代码:https://github.com/divelab/Non-local-U-Netshttps://github.com/Whu-wxy/Non-local-U-Nets-2D-block数据集(未开源):3D多模态婴儿脑部MR图像发表:2020 AAAI一、基本介绍原创 2021-03-22 22:29:11 · 1466 阅读 · 0 评论 -
[深度学习论文笔记] 3D U2-Net: A 3D Universal U-Net for Multi-Domain Medical Image Segmentation
[论文解读] 3D U2-Net: A 3D Universal U-Net for Multi-Domain Medical Image Segmentation3D-U2网络:一种用于多域医学图像分割的3D通用U网络论文:https://arxiv.org/pdf/1909.06012代码:https://github.com/huangmozhilv/u2net_torch/发表:2019 MICCAI一、基本介绍1.1历史背景U-Net这样的全卷积神经网络已经成为医学图像分割的最新方法原创 2021-03-15 21:43:15 · 2209 阅读 · 0 评论 -
[深度学习论文笔记] UNet++: A Nested U-Net Architecture for Medical Image SegmentationUNet++
[论文解读] UNet++: A Nested U-Net Architecture for Medical Image Segmentation(UNet++:一种用于医学图像分割的嵌套U-Net结构)Unet论文:https://arxiv.org/pdf/1807.10165Unet源代码:https://github.com/MrGiovanni/UNetPlusPlus发表:2018 DLMIA一、基本介绍1.1历史背景图像分割的SOTA模型有各种基于像U-Net和FCN解码编码结构的原创 2021-02-28 21:56:00 · 3413 阅读 · 0 评论