深度学习
文章平均质量分 91
回想sy
认清现实,不放弃幻想
展开
-
图卷积神经网络
图神经网络概述原创 2022-04-21 22:13:16 · 3201 阅读 · 0 评论 -
线性因子模型
线性因子模型线性因子模型是基于潜变量的一类简单概率模型,线性因子模型通过随机线性解码器函数来定义,通过函数对 hhh 的线性变换以及添加噪声来生成 xxx 。线性因子模型描述了如下的数据生成过程。首先我们从一个分布中抽取解释性因子 hhh ,h∼p(h)h \sim p(h)h∼p(h) ,其中 p(h)p(h)p(h) 是一个因子分布,满足 p(h)=∏ip(hi)p(h)=\prod_{i}p(h_i)p(h)=∏ip(hi) ,易于从中采样。接下来,再给定因子的情况下,我们对实值的可观察变量进原创 2022-04-18 14:07:35 · 1098 阅读 · 0 评论 -
autoencoder
自编码器1.欠完备自编码器从自编码器获得有用特征的一种方法是限制 hhh 的维度比 xxx 小,这种编码维度小于输入维度的自编码器称为欠完备自编码器(undercomplete autoencoder) 。学习欠完备的表示将强制自编码器捕捉训练数据中最显著的特征。学习过程可以简单的描述为最小化一个损失函数 L(x,g(f(x)))L(x,g(f(x)))L(x,g(f(x))) ,其中 LLL 是一个损失函数,如均方误差。当解码器是线性的并且 LLL 是均方误差,欠完备自编码器会学习出与 PCA 相原创 2022-04-18 09:53:06 · 774 阅读 · 0 评论 -
常见循环神经网络概括
常见循环神经网络概括循环神经网络(recurrent neural network)是一类专门用于处理序列数据的神经网络,就像卷积神经网络是专门处理网格化数据(如图像)的神经网络,卷积神经网络是专门用于处理序列 x(1),⋯ ,x(τ)x^{(1)}, \cdots, x^{(\tau)}x(1),⋯,x(τ) 的神经网络。本文主要介绍花书中提到的几种循环神经网络。循环神经网络中的一些重要设计模式包括以下几种:每个时间步都有输出,并且隐藏单元之间有循环连接的循环网络,如图每个时间步都产生一原创 2022-04-17 20:54:18 · 1928 阅读 · 0 评论 -
ActionSpotter Deep Reinforcement Learning Framework for Temporal Action Spotting in Videos
ActionSpotter: Deep Reinforcement Learning Framework for Temporal Action Spotting in Videos论文阅读笔记1.abstractaction spot 最近被提出用来代替动作检测和关键帧检测的任务,目前最有效的 action spot 方法需要昂贵的 ground truth,由人类注释的搜索序列组成——这是一个关键限制。在本文中,我们提出了一种使用强化学习算法去做 action spot 任务的算法,而且仅使用动作原创 2022-04-14 22:13:55 · 284 阅读 · 0 评论 -
L1、L2 正则化的一些原理
L1/L2 正则化与高斯先验/对数先验的 MAP 贝叶斯推断的关系1. MAP 贝叶斯推断贝叶斯推断和极大似然的用处一样,都是求生成训练数据的参数 θ\thetaθ ,但是极大似然估计是基于频率派的思想,而贝叶斯推断是基于贝叶斯派的思想。MAP(Maximum A Posteriori, MAP)最大后验估计点估计。θMAP=argmaxθp(θ∣x)=argmaxθlogp(x∣θ)+logp(θ)\theta_{MAP} = \underset{\theta}{argmax} p(\thet原创 2022-04-10 18:29:07 · 1153 阅读 · 0 评论 -
BERT论文笔记
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding作者:Google1.Introduction 预训练方法适用于 NLP 任务,包括词嵌入、GPT等方法。NLP 包括两类:第一类叫做句子层面的任务,识别句子的情绪或者连两个句子之间的关系;第二类是词语层面上的任务,识别各个词,对细粒度要求较高。 存在两种预训练的策略,第一种是基于特征的,代表作是 ELMo,对每一下游的任务,构造相关的神原创 2022-04-01 21:00:49 · 383 阅读 · 0 评论 -
Fully Convolutional Networks for Semantic Segmentation
Fully Convolutional Networks for Semantic Segmentation 论文阅读论文:Fully Convolutional Networks for Semantic Segmentation(2015 CVPR)作者:Jonathan Long Evan Shelhamer Trevor Darrell -UC Berkeley图像分割领域的开山之作1.1 研究成果将分类网络改变为全卷积神经网络,具体包括全连接层转换为卷积层以及通过反卷积进行原创 2022-03-19 21:15:41 · 5373 阅读 · 0 评论