目录
1、多维特征的输入实践-糖尿病数据预测
import numpy as np
import torch
import matplotlib.pyplot as plt
# prepare dataset
xy = np.loadtxt('diabetes.csv', delimiter=',', dtype=np.float32)
# 创建两个tensor
x_data = torch.from_numpy(xy[:, :-1])
y_data = torch.from_numpy(xy[:, [-1]]) # 只填-1得到的是向量,[-1]最后得到的是个矩阵
# design model using class
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
# 三个线性模型
self.linear1 = torch.nn.Linear(8, 6) # 输入数据x的特征是8维,x有8个特征
self.linear2 = torch.nn.Linear(6, 4)
self.linear3 = torch.nn.Linear(4, 1)
self.sigmoid = torch.nn.Sigmoid() # 有所区别
def forward(self, x):
x = self.sigmoid(self.linear1(x)) # 第一个输出x作为第二个函数的输入
x = self.sigmoid(self.linear2(x))
x = self.sigmoid(self.linear3(x)) # y hat
return x
model = Model()
# construct loss and optimizer
criterion = torch.nn.BCELoss(size_average=True)
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
epoch_list = []
loss_list = []
# training cycle forward, backward, update
for epoch in range(1000):
y_pred = model(x_data)
loss = criterion(y_pred, y_data)
print(epo

本文介绍了在PyTorch中进行深度学习时,如何处理多维特征输入用于糖尿病数据预测,并详细解析了torch.nn.BCELoss的参数含义及其在不同设置下的效果。此外,探讨了更换激活函数对模型的影响,特别是在二分类问题中使用BCELoss时,需要在预测层前添加Sigmoid函数以避免错误。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



