一维差分

为什么要用差分

可以快速查询对一个区间更新数值后得到的结果
a为原数组 d为差分数组
则 d1 = a1 d2 = a2-a1 … dn = an-an-1
可以发现 d的前缀和就是a[i]
如何实现对a数组区间的快速更新
例如 对a数组区间[l,r]实现+c操作
则我们只需要对d[l] + c ,d[r+1]-c即可
因为在求a[l],a[l]+1,…a[r]变量在求前缀和的时候都会自动加上d[l]
但是 a[r+1]之后为了消除d[l]多了个c的影响 我们需要在d[r+1]减去c即可消去影响

题目描述

输入一个长度为 n 的整数序列。

接下来输入 m 个操作,每个操作包含三个整数 l,r,c,表示将序列中 [l,r] 之间的每个数加上 c。

请你输出进行完所有操作后的序列。

输入格式
第一行包含两个整数 n 和 m。

第二行包含 n 个整数,表示整数序列。

接下来 m 行,每行包含三个整数 l,r,c,表示一个操作。

输出格式
共一行,包含 n 个整数,表示最终序列。

数据范围
1≤n,m≤100000,
1≤l≤r≤n,
−1000≤c≤1000,
−1000≤整数序列中元素的值≤1000
输入样例:
6 3
1 2 2 1 2 1
1 3 1
3 5 1
1 6 1
输出样例:
3 4 5 3 4 2

代码如下:

#include<iostream>
using namespace std;
const int N = 100010;
int d[N];
int a[N];
int s[N];
int n,m;
int main(){
	cin>>n>>m;
	for(int i = 1;i <= n;i++){
		cin>>a[i];
		d[i] += a[i];
		d[i+1] -= a[i];//可以看成对区间(i,i)实现了加a[i]操作 
	}
	while(m--){
		int l,r,c;
		cin>>l>>r>>c;
		d[l] += c;//对区间(l,r)实现了加c操作 
		d[r+1] -= c;//记得打补丁 消掉 
	}
	for(int i = 1;i <= n;i++) s[i] += s[i-1] + d[i];//求一下差分数组前缀和 
	for(int i = 1;i <= n;i++) cout<<s[i]<<" ";//每个前缀和就是a[i] 
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值