题目描述
小D在玩堆盒子的游戏,每个盒子有一个强度,代表它上方最多能堆多少个
盒子。由于盒子都是一样大的,所以不能在一个盒了上并列放超过一个盒子。
现在小D有n个盒子,第i个盒子的强度为xi。小D想知道,如果他要把这些盒
子全部堆起来,至少要堆多少堆。
输入
第一行读入一个整数n,代表小D有的盒子个数。
第二行读入n个整数,第i个整数xi表示第i个盒子的强度。
输出
共一行,一个整数表示小D至少要堆多少堆。
【数据范围】
对于20%的数据,n≤10;
对于50%的数据,n≤1000;
对于100%的数据,n≤500000,xi≤1000000000。
思路
首先我们对盒子的强度从大到小排序,可以优化程序速度,然后我们设一个大根堆保存每一堆盒子的重量,现在我们插入一个盒子在一个堆中,如果连最优的堆也存不下了,那么新开一个堆存,否则存在最优的里面。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#include<vector>
using namespace std;
int n,a[500009],s=1;
priority_queue<int,vector<int> ,greater<int> > q;
bool cmp(int x,int y)
{
return x>y;
}
int main()
{
cin>>n;
for (int i=1;i<=n;i++)
{
cin>>a[i];
}
sort(a+1,a+1+n);
q.push(1);
for (int i=2;i<=n;i++)
{
if (a[i]<q.top())
{
q.push(1);
s++;
}
else
{
int x=q.top()+1;
q.pop();
q.push(x);
}
}
cout<<s;
return 0;
}