HDU3507 Print Article

Problem Description

Zero has an old printer that doesn’t work well sometimes. As it is antique, he still like to use it to print articles. But it is too old to work for a long time and it will certainly wear and tear, so Zero use a cost to evaluate this degree.
One day Zero want to print an article which has N words, and each word i has a cost Ci to be printed. Also, Zero know that print k words in one line will cost

在这里插入图片描述

M is a const number.
Now Zero want to know the minimum cost in order to arrange the article perfectly.

Input

There are many test cases. For each test case, There are two numbers N and M in the first line (0 ≤ n ≤ 500000, 0 ≤ M ≤ 1000). Then, there are N numbers in the next 2 to N + 1 lines. Input are terminated by EOF.

Output

A single number, meaning the mininum cost to print the article.

思路

这道题使用斜率优化,设dp[i]为前i个的最优值,那么显然有:
d p i = m i n ( d p j + s q r ( s i − s j ) + m ) ( 1 < = j < i ) dp_i=min(dp_j+sqr(s_i-s_j)+m)(1<=j<i) dpi=min(dpj+sqr(sisj)+m)(1<=j<i)
s i s_i si为前缀和,然后我们考虑斜率优化。


我们首先假设在算 dp[i]时,k<j ,j点比k点优。
也就是 d p [ j ] + ( s u m [ i ] − s u m [ j ] ) 2 + M < = d p [ k ] + ( s u m [ i ] − s u m [ k ] ) 2 + M dp[j]+(sum[i]-sum[j])^2+M <= dp[k]+(sum[i]-sum[k])^2+M dp[j]+(sum[i]sum[j])2+M<=dp[k]+(sum[i]sum[k])2+M;
对上述方程进行整理移项很容易得到:(初一数学
[ ( d p [ j ] + s u m [ j ] ∗ s u m [ j ] ) − ( d p [ k ] + s u m [ k ] ∗ s u m [ k ] ) ] / 2 ( s u m [ j ] − s u m [ k ] ) < = s u m [ i ] [(dp[j]+sum[j]*sum[j])-(dp[k]+sum[k]*sum[k])] / 2(sum[j]-sum[k]) <=sum[i] [(dp[j]+sum[j]sum[j])(dp[k]+sum[k]sum[k])]/2(sum[j]sum[k])<=sum[i].
注意整理中要考虑下正负,涉及到不等号的方向。
左边我们令: y j = d p [ j ] + s u m [ j ] ∗ s u m [ j ] , x j = 2 ∗ s u m [ j ] y_j=dp[j]+sum[j]*sum[j] , x_j=2*sum[j] yj=dp[j]+sum[j]sum[j],xj=2sum[j]
那么就变成了斜率表达式: ( y j − y k ) / ( x j − x k ) < = s u m [ i ] (y_j-y_k)/(x_j-x_k) <= sum[i] yjyk/(xjxk)<=sum[i];(初中数学??
而且不等式右边是递增的。


所以我们可以看出以下两点:我们令 g [ k , j ] = ( y j − y k ) / ( x j − x k ) g[k,j]=(y_j-y_k)/(x_j-x_k) g[k,j]=(yjyk)/(xjxk)
第一:如果上面的不等式成立,那就说j比k优,而且随着i的增大上述不等式一定是成立的,也就是对i以后算DP值时,j都比k优。那么k就是可以淘汰的。(满足单独队列特性)(单调队列前面的出队方法)

第二:如果 k<j<i 而且 g[k,j]>g[j,i] 那么 j 是可以淘汰的。
如果 g[j,i]<=sum[i]就是i比j优,那么j没有存在的价值
如果 g[j,i]>sum[i] 那么同样有 g[k,j]>sum[i] 那么 k比 j优 那么 j 是可以淘汰的(单调队列的末尾出队判断)


在代码实现中我们不需要用g[k,j],我们可以使用函数来代表 x i , y j x_i,y_j xi,yj和dp方程.
code:

#include<iostream>
#include<algorithm>
#include<cstring>
#include<deque>
#include<cstdio>
#include<map>
using namespace std;
int f[500001],s[500001],a[500001];
int mx,t,v,w,c,b,k,x,l,r;
int n,p,q,i,m;
void read(int& x)
{
	x=0;
	int f=1;
	char ch=getchar();
	while (!isdigit(ch)) (ch=='-')&&(f=-1),ch=getchar();
	while (isdigit(ch)) x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
	x*=f;
}
void wr(int x)
{
	(x<0)&&(x=-x,putchar('-'));
	if (x>9) wr(x/10);
	putchar(x%10^48);
}
int dp1(int x,int y)
{
	return f[x]+m+(s[x]-s[y])*(s[x]-s[y]);
}
int f1(int x,int y)
{
	return f[x]+s[x]*s[x]-f[y]-s[y]*s[y];
}
int f2(int x,int y)
{
	return (s[x]-s[y]);
}
int main()
{
	while (cin>>n>>m)//**读入
	{
		s[0]=0;
		for (i=1;i<=n;i++)
		{
			cin>>x;
			s[i]=s[i-1]+x;
			f[i]=0;
		}
		f[0]=0;
		l=0,r=0;
		for (int i=1;i<=n;i++)
		{
			while (l<r&&f1(a[l+1],a[l])<=2*s[i]*f2(a[l+1],a[l])) l++;
			f[i]=dp1(a[l],i);
			while (l<r&&f1(i,a[r])*f2(a[r],a[r-1])<=f1(a[r],a[r-1])*f2(i,a[r]))
			{
				r--;
			}
			a[++r]=i;
		}
		wr(f[n]);
		printf("\n");
	}
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值