题目
思路
显然的lca,重点在于如何+1.
我们考虑树上差分。
我们先考虑前缀和:所有子节点的前缀和+本节点的差分值
有了前缀和的定义,我们就要考虑如何差分了。
显然,从x到lca(x,y)是需要x+1,lca(x,y)的父节点-1的,但是我们还需要把y到lca(x,y)这条路径+1,同理,y+1,lca(x,y)的父节点+1,但会发现lca(x,y)多了一次,所以lca(x,y)-1。
处理一下细节:
根据题意,发现我们从第2个访问的点开始,都不需要再把他们+1了(前面的终点已经+1了),所以在求前缀和前先把其-1
code:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<string>
#include<cstring>
#include<cmath>
using namespace std;
int fa[500010][27],head[500010],c[500010],cf[500010],uo[500010],x,y;
struct f{
int to,net;
} a[1000020];
int n,m,s;
void dfs(int x,int f)
{
fa[x][0]=f;
c[x]=c[f]+1;
for (int j=1;(1<<j)<=c[x];j++)
{
fa[x][j]=fa[fa[x][j-1]][j-1];
}
for (int i=head[x];i!=-1;i=a[i].net)
{
if (a[i].to!=f) dfs(a[i].to,x);
}
return;
}
int k;
void add(int u,int v)
{
a[k].to=v;
a[k].net=head[u];
head[u]=k++;
return;
}
int LCA(int x,int y)
{
if (c[x]>c[y]) swap(x,y);
for (int i=20;i>=0;i--)
{
if (c[x]<=c[fa[y][i]]) y=fa[y][i];
}
if (x==y) return x;
for (int i=20;i>=0;i--)
{
if (fa[x][i]==fa[y][i]) continue;
else x=fa[x][i],y=fa[y][i];
}
return fa[x][0];
}
void dfs1(int x,int f)
{
for (int i=head[x];i!=-1;i=a[i].net)
{
if (a[i].to!=f)
{
dfs1(a[i].to,x);
cf[x]+=cf[a[i].to];
}
}
return;
}
int main()
{
memset(head,-1,sizeof(head));
cin>>n;
for (int i=1;i<=n;i++)
{
cin>>uo[i];
}
for (int i=1;i<n;i++)
{
cin>>x>>y;
add(x,y);
add(y,x);
}
dfs(1,0);
for (int i=1;i<n;i++)
{
int u=LCA(uo[i],uo[i+1]);
cf[uo[i]]++;
cf[uo[i+1]]++,cf[u]--,cf[fa[u][0]]--;
}
dfs1(1,0);
for (int i=2;i<=n;i++) cf[uo[i]]--;
for (int i=1;i<=n;i++) cout<<cf[i]<<endl;
return 0;
}