P4281 [AHOI2008]紧急集合 / 聚会

这段代码实现了一个利用 Lowest Common Ancestor (LCA) 算法解决路径查询问题的程序。它通过DFS预处理建立从每个节点到根节点的路径,并在询问时快速找到两个节点的最近公共祖先。在询问三个节点x、y和z时,计算它们的LCA并输出路径长度之和的差值作为答案。
摘要由CSDN通过智能技术生成

题目

题目

思路

显然的LCA
code:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<string>
#include<cstring>
#include<cmath> 
using namespace std;
int fa[500010][27],head[500010],c[500010],x,y,z;
struct f{
	int to,net;
} a[1000020];
int n,m;
void dfs(int x,int f)
{
	fa[x][0]=f;
	c[x]=c[f]+1;
	for (int j=1;(1<<j)<=c[x];j++)
	{
		fa[x][j]=fa[fa[x][j-1]][j-1];
	}
	for (int i=head[x];i;i=a[i].net)
	{
		if (a[i].to!=f) dfs(a[i].to,x);
	}
	return;
}
int k=1;
void add(int u,int v)
{
    a[k].to=v;
	a[k].net=head[u];
    head[u]=k++;
    return; 
}
int LCA(int x,int y)
{
	if (c[x]>c[y]) swap(x,y);
	for (int i=20;i>=0;i--)
	{
		if (c[x]<=c[y]-(1<<i)) y=fa[y][i];
	}
	if (x==y) return x;
	for (int i=20;i>=0;i--)
	{
		if (fa[x][i]==fa[y][i]) continue;
		else x=fa[x][i],y=fa[y][i];
	}
	return fa[x][0];
}
long long ans;
int main()
{
	scanf("%d%d",&n,&m);
	for (int i=1;i<n;i++)
	{
		scanf("%d%d",&x,&y);
		add(x,y);
		add(y,x);
	}
	dfs(1,0);
	while (m--)
	{
		scanf("%d%d%d",&x,&y,&z);
		int xx=LCA(x,y),yy=LCA(y,z),zz=LCA(x,z);
		if (xx==yy) printf("%d ",zz);
		else if (yy==zz) printf("%d ",xx);
		else if (zz==xx) printf("%d ",yy);
		ans=c[x]+c[y]+c[z]-c[xx]-c[yy]-c[zz];
		printf("%lld\n",ans);
	}
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值