P4139 上帝与集合的正确用法

本文介绍了一种使用欧拉函数和非筛法求解222... mod p的问题,通过先哲公式简化计算,并提供了C++代码实现。重点在于利用phi(p)和幂运算技巧来简化大数模运算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

题目

思路

2 2 2 … m o d    p 2^{2^{2^{…}}}\mod p 222modp
显然有伟大先哲告诉我们: a b m o d    p = a b m o d    ϕ ( p ) + ϕ ( p ) ( b > = ϕ ( p ) ) a^b\mod p=a^{b\mod \phi(p)+\phi(p)}(b>=\phi(p)) abmodp=abmodϕ(p)+ϕ(p)(b>=ϕ(p))
然后就代入直接算就好了,建议用非筛法求 ϕ \phi ϕ
code:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
long long t,n;
long long ksm(long long x,long long y,long long myd)
{
	long long ans=1;
	while (y)
	{
		if (y&1) ans=ans*x%myd;
		x=x*x%myd;
		y>>=1;
	}
	return ans;
}
long long phi(long long x)
{
	long long o=2,ans=x;
	while (o*o<=n)
	{
		if (x%o==0)
		{
			ans=ans/o*(o-1);
			while (x%o==0) x/=o;
		}
		o++;
	}
	if (x>1) ans=ans/x*(x-1);
	return ans;
}
long long f(long long x)
{
	if (x<3) return 0;
	long long y=phi(x);
	return ksm(2,y+f(y),x);
}
int main()
{
	cin>>t;
	while (t--)
	{
		cin>>n;
		cout<<f(n)<<endl;
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值