岭回归与Lasso回归

岭回归

解决了线性回归参数β可能出现的不合理现象,弥补其短板:
1.当线性回归数据的行数小于列数
2.数据中变量之间存在多重线性关系
实现的思路其实就是在线性回归的基础上加一个l2惩罚项(正则项)
在这里插入图片描述
将模型做凸优化
在这里插入图片描述
而且系数本质上就是求半椭圆体与圆柱体的焦点
在这里插入图片描述

Lasso回归
岭回归模型解决了线性回归模型中矩阵X’X不可逆的办法是添加l2正则的惩罚项,但缺陷在浴室中保留建模时所有变量,无法降低模型的复杂度。对于此,Lasso回归采用了l1正则的惩罚项
在这里插入图片描述
将模型做凸优化
在这里插入图片描述
模型系数求解本质上就是求半椭圆体与正方体的焦点
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值