岭回归
解决了线性回归参数β可能出现的不合理现象,弥补其短板:
1.当线性回归数据的行数小于列数
2.数据中变量之间存在多重线性关系
实现的思路其实就是在线性回归的基础上加一个l2惩罚项(正则项)
将模型做凸优化
而且系数本质上就是求半椭圆体与圆柱体的焦点
Lasso回归
岭回归模型解决了线性回归模型中矩阵X’X不可逆的办法是添加l2正则的惩罚项,但缺陷在浴室中保留建模时所有变量,无法降低模型的复杂度。对于此,Lasso回归采用了l1正则的惩罚项
将模型做凸优化
模型系数求解本质上就是求半椭圆体与正方体的焦点