岭回归(Ridge Regression)和Lasso回归

岭回归(Ridge Regression)

岭回归也是一种用于回归的线性模型,因此它的预测公式与普通最小二乘法相同。但在岭 回归中,对系数(w)的选择不仅要在训练数据上得到好的预测结果,而且还要拟合附加约束。我们还希望系数尽量小。换句话说,w 的所有元素都应接近于0。直观上来看,这意味着每个特征对输出的影响应尽可能小(即斜率很小),同时仍给出很好的预测结果。 这种约束是所谓正则化(regularization)的一个例子。正则化是指对模型做显式约束,以避免过拟合。岭回归用到的这种被称为 L2 正则化。

868176304fb046c19805cab3a88ce266.png

 Lasso回归

Lasso回归有时也叫做线性回归的L1正则化,和Ridge回归的主要区别就是在正则化项,Ridge回归⽤的是L2正则化,⽽Lasso回归⽤的是L1正则化。

6b4b8015dd8a4371b68e9d435e651a74.png

 总结

在实践中,在两个模型中一般首选岭回归。但如果特征很多,你认为只有其中几个是重要 的,那么选择 Lasso 可能更好。同样,如果你想要一个容易解释的模型,Lasso 可以给出 更容易理解的模型,因为它只选择了一部分输入特征。

1e062d6b44e040f28628ecaff4c4d402.jpg

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值