【案例教程】地球科学数据(ERA5、雪深、积雪覆盖、海温、植被指数、土地利用)处理实践

【查看原文】地 球 科 学 常 见 数 据 的 处 理 实 践 技 术 应 用

        在地球科学中,不同数据根据具体学科的特色存储为多种数据格式。在科研工作中需要将多种数据进行综合使用分析,因此需要寻找学习通用的数据格式解决方法,把研究的精力聚焦到具体科学问题上。
针对上述问题,本内容选取大气科学、水文学和生态学常见的数据进行讲解。

讲解的主要格式:
l 全球大气再分析数据netCDF
l 雪深ASCII l 积雪覆盖ASCII/TIFF
l 海温数据netCDF
l 植被指数数据NDVI
l 土地利用数据HDF

需要的处理工具:
Anaconda 5.0+(python 3.6)、xarray==0.13、netcdf4==1.5.3、rasterio、pandas、pyhdf、fiona、shapely、gdal

内容简述:

一、全球大气再分析数据-ERA5数据
       ECMWF中心推出的ERA5全球大气再分析数据提供了大量大气、陆地和海洋气候变量的逐小时数据。这些数据在30km网格上覆盖了全球,在时间跨度上从1979至今。该数据能够提供全球范围的格点气象数据。
针对该数据介绍以下内容:
A、 多年数据的读取
一般在下载过

### 关于风云卫星MWRI传感器雪深或雪水当量日产品的数据处理 风云系列气象卫星配备的微波辐射计(MWRI)能够提供多种地球物理参数的日产品,其中包括雪深和雪水当量(SWE)[^1]。这些参数对于研究积雪特性及其变化至关重要。 #### 数据处理方法 为了从MWRI观测数据中提取可靠的雪深和SWE信息,通常采用以下几种技术手段: - **反演算法**:利用先进的物理模型来模拟微波信号与地面覆盖物之间的相互作用过程,从而推算出地表上的实际雪深以及对应的水分含量。这种方法依赖于精确的大气校正和其他辅助输入变量,如温度、湿度廓线等[^2]。 - **经验关系法**:基于历史统计数据建立的经验公式可以直接将特定频率下的亮度温度转换成相应的雪属性值。尽管简单易行,但此类方法可能因地区差异而存在局限性[^3]。 - **机器学习模型**:近年来兴起的一种新途径是通过训练神经网络或其他类型的AI算法来进行预测分析。这类方案可以自动识别复杂模式并适应不同环境条件的变化趋势,在提高精度的同时减少了人为干预的需求[^4]。 #### 使用工具和技术栈 针对上述提到的各种计算需求,科研人员可以选择合适的软件平台和支持库完成整个工作流程的设计实现: - **IDL/ENVI**: 广泛应用于遥感领域内的图像处理任务;内置丰富的函数接口便于快速开发定制化应用模块。 - **Python (PyTorch/TensorFlow)**: 开源编程语言配合强大的深度学习框架非常适合构建复杂的回归分类器用于特征挖掘优化。 - **MATLAB/GDAL/OSSIM**: 提供全面的地图投影变换能力支持多源异构地理空间数据分析整合操作。 ```python import numpy as np from sklearn.model_selection import train_test_split from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout def preprocess_data(raw_dataset): """预处理原始数据集""" X = raw_dataset['brightness_temperature'] y = raw_dataset['snow_depth_swe'] # 归一化处理... return X_normalized, y_scaled X_train, X_val, y_train, y_val = train_test_split(X, y) model = Sequential([ Dense(64, activation='relu', input_shape=(input_dim,)), Dropout(rate=0.5), Dense(output_dim) ]) # 编译配置损失函数优化器指标项... history = model.fit( x=X_train, y=y_train, validation_data=(X_val, y_val), epochs=num_epochs ) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值