(10)矩阵乘积态与量子纠缠

1.矩阵乘积态

1.1引出:

问题:由于基态的参数复杂度随自旋数N指数上升,故无法在经典计算机上进行严格对角化求解基态.

1.2解决方案:利用TT形式求解基态

假设N自旋基态(系数)可以写成由N个二阶或三阶张量构成的TT形式,则直接通过优化这N个张量,求解基态对应的最优化问题:
E g = min ⁡ ⟨ g ∣ g ⟩ = 1 ⟨ g ∣ H ^ ∣ g ⟩ E_{g}=\min _{\langle g \mid g\rangle=1}\langle g|\widehat{H}| g\rangle Eg=gg=1mingH g注: g ⟩ g\rangle g in TT−form
基态在归一化形式下,我们要极小化它的能量。
一般而言,矩阵乘积态(matrix product state, MPS)定义为系数满足TT形式的量子态:
∣ φ ⟩ = ∑ s 1 s 2 … s N φ s 1 s 2 … s N ∏ ⊗ n = 1 N ∣ s n ⟩ |\varphi\rangle=\sum_{s_{1} s_{2} \ldots s_{N}} \varphi_{s_{1} s_{2} \ldots s_{N}} \prod_{\otimes n=1}^{N}\left|s_{n}\right\rangle φ=s1s2sNφs1s2sNn=1Nsn

φ s 1 s 2 … s N = ∑ a 1 a 1 … a N − 1 A s 1 a 1 ( 1 ) A s 2 a 1 a 2 ( 2 ) … A s N − 1 a N − 2 a N − 1 ( N − 1 ) A s N a N − 1 ( N ) = A s 1 : ( 1 ) A s 2 : : ( 2 ) … A s N − 1 : : ( N − 1 ) A s N : ( N ) T \begin{aligned} \varphi_{s_{1} s_{2} \ldots s_{N}}&=\sum_{a_{1} a_{1} \ldots a_{N-1}} A_{s_{1} a_{1}}^{(1)} A_{s_{2} a_{1} a_{2}}^{(2)} \ldots A_{s_{N-1} a_{N-2} a_{N-1}}^{(N-1)} A_{s_{N} a_{N-1}}^{(N)}\\ &=A_{s_{1}:}^{(1)} A_{s_{2}::}^{(2)} \ldots A_{s_{N-1}::}^{(N-1)} A_{s_{N}:}^{(N) \mathrm{T}}\end{aligned} φs1s2sN=a1a1aN1As1a1(1)As2a1a2(2)AsN1aN2aN1(N1)AsNaN1(N)=As1:(1)As2::(2)As

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值