1.张量的四种定义
1.张量是多维数组,这个定义常见于各种人工智能软件。
2.张量是某种几何对象,不会随着坐标系的改变而改变
3.张量是向量和余向量(covector)通过张量积(tensor product)组合而成的。
4.张量是多重线性映射,即:
除零阶张量外,张量的具体表示还与坐标系的选择有关,选择不同的坐标系,意味着选择不同的基矢(basis)进行展开。以矢量为例,在给定坐标系,矢量由多个数构成,这些数实际上为当前基矢下的展开系数,如果坐标轴变化了,即基矢变化了,那么自然而然,对应的展开系数也就变化了。
2.张量表示形式
一阶张量可以理解为一个向量,二阶张量可以理解为矩阵,三阶张量可以理解成立方体,四阶张量可以理解成立方体组成的一个向量,五阶张量可以理解成立方体组成的矩阵,依次类推。
把三维张量画成一个立方体:
3.现实世界中的数据张量
1)向量数据
2D张量,形状为(samples,features)
2)时间序列数据或序列数据
3D张量,形状为(sampe