(14)Uniform MPS及其涨落

背景

当我们在研究物理算法的时候,通常要研究无穷大的体系,一旦涉及无穷大,我们将引入平移不变性。


问:什么是平移不变性呢?
答:平移不变性意味着系统产生完全相同的响应(输出),不管它的输入是如何平移的 。


如果系统本身具备平移不变性, 且尺寸为无穷大时 :
例如:一维无穷大海森堡模型, 其哈密顿量可写为:
H ^ = ∑ i = 1 ∞ H ^ i , i + 1 \hat{H}=\sum_{i=1}^{\infty} \widehat{H}_{i, i+1} H^=i=1H i,i+1基态往往具备相应的对称性,例如平移对称性、空间反演对称性等。


问:为什么基态具有平移不变性?
答:哈密顿量可以写成局域哈密顿量的求和,并且每一项都相同,耦合参数也相同,哈密顿量本身具有平移不变性,因此基态也具有平移不变性
问:那为什么引入平移不变的MPS态呢?
答: 如果用MPS态来计算哈密顿量的基态,就可以定义平移不变的MPS态来计算


1.无穷长平移不变矩阵乘积态

单张量平移不变MPS(uniform MPS)

定义单张量平移不变MPS(又称均匀MPS,uniform MPS):
Ψ s 1 s 2 … = Tr ⁡ ( A s 1 , : , : A s 2 , : , : ⋯ ) \Psi_{s_{1} s_{2} \ldots}=\operatorname{Tr}\left(A_{s_{1}, :, :} A_{s_{2}, :, :\cdots}\right) Ψs1s2=Tr(As1,:,:As2,:,:)该MPS中仅包含一个张量 A , A, A, 记为不等价张量, 整个MPS由不等价张量的无穷多个复制收缩构成, 可简单记为 Ψ = Tr ⁡ ( [ A ] ∞ ) \Psi=\operatorname{Tr}\left([A]^{\infty}\right) Ψ=Tr([A])
如图所示:
在这里插入图片描述

补充:
上述定义可直接推广到多张量平移不变MPS,例如双张量平移不变的情况: Ψ = Tr ⁡ ( [ A B ] ∞ ) \Psi=\operatorname{Tr}\left([A B]^{\infty}\right) Ψ=Tr([AB])
如图所示:
在这里插入图片描述
(注:张量A,B随机排列)
注:
①反应无穷大平移不变MPS性质最重要的量其转移矩阵及转移矩阵的本征向量(这将在后面知识中详细介绍和运用)
②有限MPS的各个算法可推广至无穷长MPS,例如无穷密度矩阵重整化群(iDMRG)算法、无穷TEBD算法(iTEBD)等
③无穷长平移不变矩阵乘积态又称均匀矩阵乘积态(uniform MPS,uMPS),这一类态构成了量子Hilbert空间中一类特殊的流形。

2.矩阵乘积态的涨落

这里我们主要探讨任意辅助指标维数有限的MPS的关联与纠缠性质。
定义关联函数为, 处于不同格点单体算符相乘的平均值
⟨ O ^ 1 , O ^ 2 ⟩ = ⟨ φ ∣ O ^ 1 O ^ 2 ∣ φ ⟩ \left\langle\hat{O}_{1}, \hat{O}_{2}\right\rangle=\left\langle\varphi\left|\hat{O}_{1} \hat{O}_{2}\right| \varphi\right\rangle O^1,O^2=φO^1O^2φ图形表示为:
在这里插入图片描述
定义涨落为,关联函数减去各算符平均值的乘积:
F = ⟨ O ^ 1 , O ^ 2 ⟩ − ⟨ O ^ 1 ⟩ ⟨ O ^ 2 ⟩ = ⟨ φ ∣ O ^ 1 O ^ 2 ∣ φ ⟩ − ⟨ φ ∣ O ^ 1 ∣ φ ⟩ ⟨ φ ∣ O ^ 2 ∣ φ ⟩ F=\left\langle\hat{O}_{1}, \hat{O}_{2}\right\rangle-\left\langle\hat{O}_{1}\right\rangle\left\langle\hat{O}_{2}\right\rangle=\left\langle\varphi\left|\hat{O}_{1} \hat{O}_{2}\right| \varphi\right\rangle-\left\langle\varphi\left|\hat{O}_{1}\right| \varphi\right\rangle\left\langle\varphi\left|\hat{O}_{2}\right| \varphi\right\rangle F=O^1,O^2O^1O^2=φO^1O^2φφO^1φφO^2φ
即: O ^ 1 , O ^ 2 \hat{O}_{1}, \hat{O}_{2} O^1,O^2的均值减去 O ^ 1 \hat{O}_{1} O^1的均值与 O ^ 2 \hat{O}_{2} O^2均值的乘积
性质一:考虑无穷长的实MPS,且空间反演不变与平移不变(构成MPS的所有张量都相等, 即当 ∀ n \forall n n A ( n ) = A ) A^{(n)}=A ) A(n)=A) ,此时当两个算符距离 D ≫ 1 D \gg 1 D1 时,涨落随涨落随D指数衰减,满足:
F ∼ e − D ξ F \sim e^{-\frac{D}{\xi}} FeξD其中, ξ \xi ξ正的常数, 被称为关联长度
注:空间反演不变:将整个MPS态做一个左右指标交换,最终保持不变。


证明:设算符不出现在MPS边界, 定义:
MPS转移矩阵 T a a ′ , b b ′ = ∑ s A s a ′ b ′ ∗ A s a b , T_{a a^{\prime}, b b^{\prime}}=\sum_{s} A_{s a^{\prime} b^{\prime}}^{*} A_{s a b}, \quad Taa,bb=sAsabAsab,
如图:
在这里插入图片描述
算子转移矩阵 T [ a a ′ ] , [ b b ′ ] ( O ^ ) = ∑ s s ′ A s a ′ b ′ ∗ O s s ′ A s ′ a b T_{\left[a a^{\prime}\right],\left[b b^{\prime}\right]}(\hat{O})=\sum_{s s^{\prime}} A_{s a^{\prime} b^{\prime}}^{*} O_{s s^{\prime}} A_{s^{\prime} a b} \quad T[aa],[bb](O^)=ssAsabOssAsab
注:逗号左右隔开的括号中的指标表示矩阵的两个指标 。
如图:
在这里插入图片描述
(其中 O S S ′ O_{S S^{\prime}} OSS 是算符 O ^ \hat{O} O^ 的系数)
总演示图为:
在这里插入图片描述
此时有:
⟨ O ^ 1 , O ^ 2 ⟩ = lim ⁡ D L , D R → ∞ Tr ⁡ [ T D L T ( O ^ 1 ) T D T ( O ^ 2 ) T D R ] \left\langle\hat{O}_{1}, \hat{O}_{2}\right\rangle=\lim _{D_{L}, D_{R} \rightarrow \infty} \operatorname{Tr}\left[T^{D_{L}} T\left(\hat{O}_{1}\right) T^{D} T\left(\hat{O}_{2}\right) T^{D_{R}}\right] O^1,O^2=DL,DRlimTr[TDLT(O^1)TDT(O^2)TDR]当空间反演不变时,转移矩阵T为实对称阵,满足 lim ⁡ K → ∞ T K = Γ K v v T , \lim _{K \rightarrow \infty} T^{K}=\Gamma^{K} v v^{\mathrm{T}}, limKTK=ΓKvvT, 其中Г为 T T T 的最大本征值, v v v 为最大本征向量(回顾 最大本征值问题的幂级数求解法) ,上式化简为:
⟨ O ^ 1 , O ^ 2 ⟩ = lim ⁡ D L , D R → ∞ Γ D L + D R Tr ⁡ [ v T ( O ^ 1 ) T D T ( O ^ 2 ) v T ] \left\langle\hat{O}_{1}, \hat{O}_{2}\right\rangle=\lim _{D_{L}, D_{R} \rightarrow \infty} \Gamma^{D_{L}+D_{R}} \operatorname{Tr}\left[v T\left(\hat{O}_{1}\right) T^{D} T\left(\hat{O}_{2}\right) v^{\mathrm{T}}\right] O^1,O^2=DL,DRlimΓDL+DRTr[vT(O^1)TDT(O^2)vT]同理可得:
⟨ O ^ 1 ⟩ = lim ⁡ D L , D R → ∞ Γ N − 1 Tr ⁡ [ v T ( O ^ 1 ) v T ] ⟨ O ^ 2 ⟩ = lim ⁡ D L , D R → ∞ Γ N − 1 Tr ⁡ [ v T ( O ^ 2 ) v T ] \begin{array}{l} \left\langle\hat{O}_{1}\right\rangle=\lim _{D_{L}, D_{R} \rightarrow \infty} \Gamma^{N-1} \operatorname{Tr}\left[v T\left(\hat{O}_{1}\right) v^{\mathrm{T}}\right] \\ \left\langle\hat{O}_{2}\right\rangle=\lim _{D_{L}, D_{R} \rightarrow \infty} \Gamma^{N-1} \operatorname{Tr}\left[v T\left(\hat{O}_{2}\right) v^{\mathrm{T}}\right] \end{array} O^1=limDL,DRΓN1Tr[vT(O^1)vT]O^2=limDL,DRΓN1Tr[vT(O^2)vT]于是有:
F = ⟨ O ^ 1 , O ^ 2 ⟩ − ⟨ O ^ 1 ⟩ ⟨ O ^ 2 ⟩ = lim ⁡ D L , D R → ∞ Γ N − 1 { Tr ⁡ [ v T ( O ^ 1 ) T D Γ D T ( O ^ 2 ) v T ] − v T ( O ^ 1 ) v T v T ( O ^ 2 ) v T } \begin{array}{l} F=\left\langle\hat{O}_{1}, \hat{O}_{2}\right\rangle-\left\langle\hat{O}_{1}\right\rangle\left\langle\hat{O}_{2}\right\rangle \\ =\lim _{D_{L}, D_{R} \rightarrow \infty} \Gamma^{N-1}\left\{\operatorname{Tr}\left[v T\left(\hat{O}_{1}\right) \frac{T^{D}}{\Gamma^{D}} T\left(\hat{O}_{2}\right) v^{\mathrm{T}}\right]-v T\left(\hat{O}_{1}\right) v^{\mathrm{T}} v T\left(\hat{O}_{2}\right) v^{\mathrm{T}}\right\} \end{array} F=O^1,O^2O^1O^2=limDL,DRΓN1{Tr[vT(O^1)ΓDTDT(O^2)vT]vT(O^1)vTvT(O^2)vT}注意, MPS总长度 N = D L + D + D R + 2 , N=D_{L}+D+D_{R}+2, N=DL+D+DR+2, D ≫ 1 D \gg 1 D1 时有 :
N − 1 ≈ D L + D + D R N-1 \approx D_{L}+D+D_{R} N1DL+D+DR D ≫ 1 D \gg 1 D1
T D Γ D = v T v + ( Γ ′ Γ ) D v ′ T v ′ + ⋯ \frac{T^{D}}{\Gamma^{D}}=v^{\mathrm{T}} v+\left(\frac{\Gamma^{\prime}}{\Gamma}\right)^{D} v^{\prime \mathrm{T}} v^{\prime}+\cdots ΓDTD=vTv+(ΓΓ)DvTv+
其中,「'与v’为次大本征值与本征向量, 忽略更高阶本征项的贡献,有
F = lim ⁡ N → ∞ Γ N − 1 Tr ⁡ [ v T ( O ^ 1 ) v ′ T ( Γ ′ Γ ) D v ′ T ( O ^ 2 ) v T ] ∼ Γ N − 1 ( Γ ′ Γ ) D F=\lim _{N \rightarrow \infty} \Gamma^{N-1} \operatorname{Tr}\left[v T\left(\hat{O}_{1}\right) v^{\prime \mathrm{T}}\left(\frac{\Gamma^{\prime}}{\Gamma}\right)^{D} v^{\prime} T\left(\hat{O}_{2}\right) v^{\mathrm{T}}\right] \sim \Gamma^{N-1}\left(\frac{\Gamma^{\prime}}{\Gamma}\right)^{D} F=NlimΓN1Tr[vT(O^1)vT(ΓΓ)DvT(O^2)vT]ΓN1(ΓΓ)D同时容易看出, 对于这里考虑的MPS,有
⟨ φ ∣ φ ⟩ = Γ N = 1 ⇒ Γ = 1 \langle\varphi \mid \varphi\rangle=\Gamma^{N}=1 \Rightarrow \Gamma=1 φφ=ΓN=1Γ=1因此有 F ∼ ( Γ ′ ) D = e − D ξ , F \sim\left(\Gamma^{\prime}\right)^{D}=e^{-\frac{D}{\xi}}, F(Γ)D=eξD, 且关联长度
ξ = − 1 ln ⁡ Γ ′ \xi=-\frac{1}{\ln \Gamma^{\prime}} ξ=lnΓ1


3.总结:

①因此,对于无穷长的、平移不变且空间反演对称的实MPS,只能描述在长距离时涨落指数衰减的量子态。
( 注:平移不变是为了简化问题,使所有转移矩阵相等;空间反演对称与实数要求是为了使系统具有实的本征值和本征向量;证明过程中还用到了一个隐含条件,那就是最大本征值唯一(不简并))
②一般情况下(例如有限长度、非平移不变等),关联长度也是有限的。
因此,MPS难以用来很好地描述具备发散关联长度的系统,例如临界系统。
③对于临界系统,其临界性质可以通过研究相关性质的标度变化关系获得(类似于重整化群的思想)

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值