使用最大纠缠态来制备MPS(with periodic boundary conditions)

前提背景

Affleck, Kennedy, Lieb, and Tasaki(AKLT)模型:
AKLT模型:是一维的延伸量子(海森堡自旋模型)
通过构造,AKLT哈密顿量的基态是带有连接每个相邻位点对的单价键的价键固体。在图形上,这可以表示为:
在这里插入图片描述
在这里,实心点表示自旋1/2,并处于单重态。连接自旋1/2的线是表示单线态的价键。椭圆是投影算子,它们将两个自旋1/2一起“绑定”为一个自旋1,突出自旋0或单重态子空间,并仅保留自旋1或三重态子空间。符号“ +”,“ 0”和“-”标记了标准自旋1基态( S z S^{z} Sz运算符)。

正文:

对于一个具有𝑛个自由度的量子多体系统:
在这里插入图片描述
在这里插入图片描述
问题:一共 d N d^N dN个元素这是一个巨大无比的张量计算机根本无法存储
解决方案:将其化为一个近似的特殊的张量网络表达,下面以MPS态表示
矩阵乘积态有两种不同的MPS形式,在本文中,我们将运用最大纠缠态来制备周期边界条件的MPS(PBC-MPS)如图所示:
在这里插入图片描述
在这里插入图片描述


在这里插入图片描述
注:其中每个粒子各自的取值情况数为2,分别为0,1
a i b i a_{i}b_{i} aibi这两个粒子是两个不相关的粒子

1 2 ( ∣ 01 ⟩ − ∣ 10 ⟩ ) b i a i + 1 \frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)_{b_{i} a_{i+1}} 2 1(0110)biai+1

第一步

我们对这个纠缠做一个变换:
1 2 ( ∣ 01 ⟩ − ∣ 10 ⟩ ) b i a i + 1 = 1 2 [ 0 1 − 1 0 ] b i a i + 1 ( ∣ 00 ⟩ + ∣ 11 ⟩ ) b i a i + 1 \frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)_{b_{i} a_{i+1}}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]_{b_{i} a_{i+1}}(|00\rangle+|11\rangle)_{b_{i} a_{i+1}} 2 1(0110)biai+1=2 1[0110]biai+1(00+11)biai+1
证明:


①方法一
因为:
∣ 0 ⟩ = ( 1 , 0 ) T , ∣ 1 ⟩ = ( 0 , 1 ) T |0\rangle = (1,0)^T,|1\rangle = (0,1)^T 0=(1,0)T,1=(0,1)T
所以 ∣ 01 ⟩ = ( 0 , 1 , 0 , 0 ) T , ∣ 10 ⟩ = ( 0 , 0 , 1 , 0 ) T , ∣ 00 ⟩ = ( 1 , 0 , 0 , 0 ) T , ∣ 11 ⟩ = ( 0 , 0 , 0 , 1 ) T |01\rangle = (0,1,0,0)^T,|10\rangle = (0,0,1,0)^T,|00\rangle = (1,0,0,0)^T,|11\rangle = (0,0,0,1)^T 01=(0,1,0,0)T,10=(0,0,1,0)T,00=(1,0,0,0)T,11=(0,0,0,1)T
∣ 01 ⟩ − ∣ 10 ⟩ = ( 0 , 1 , − 1 , 0 ) T , ∣ 00 ⟩ + ∣ 11 ⟩ = ( 1 , 0 , 0 , 1 ) T |01\rangle-|10\rangle = (0,1,-1,0)^T,|00\rangle+|11\rangle = (1,0,0,1)^T 0110=(0,1,1,0)T,00+11=(1,0,0,1)T
∣ 01 ⟩ − ∣ 10 ⟩ = ( 0 , 1 , − 1 , 0 ) T |01\rangle-|10\rangle = (0,1,-1,0)^T 0110=(0,1,1,0)Treshape为矩阵
[ 0 1 − 1 0 ] \left[ \begin{matrix} 0 & 1 \\ -1 & 0 \end{matrix} \right] [0110] ∣ 00 ⟩ + ∣ 11 ⟩ = ( 1 , 0 , 0 , 1 ) T |00\rangle+|11\rangle = (1,0,0,1)^T 00+11=(1,0,0,1)Treshape为矩阵
[ 1 0 0 1 ] \left[ \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right] [1001]因为:
[ 0 1 − 1 0 ] × [ 1 0 0 1 ] = [ 0 1 − 1 0 ] \left[ \begin{matrix} 0 & 1 \\ -1 & 0 \end{matrix} \right] \times \left[ \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right] = \left[ \begin{matrix} 0 & 1 \\ -1 & 0 \end{matrix} \right] [0110]×[1001]=[0110] [ 0 1 − 1 0 ] \left[ \begin{matrix} 0 & 1 \\ -1 & 0 \end{matrix} \right] [0110]reshape为向量即为 ( 0 , 1 , − 1 , 0 ) T = ∣ 01 ⟩ − ∣ 10 ⟩ (0,1,-1,0)^T = |01\rangle-|10\rangle (0,1,1,0)T=0110
②方法二
由①可知 ∣ 00 ⟩ + ∣ 11 ⟩ = ( 1 , 0 , 0 , 1 ) T |00\rangle+|11\rangle = (1,0,0,1)^T 00+11=(1,0,0,1)Treshape出来的是一个单位阵,与任何矩阵乘积不改变原来矩阵形式


M b i a i + 1 = 1 2 [ 0 1 − 1 0 ] b i a i + 1 M_{b_{i} a_{i+1}} = \frac{1}{\sqrt{2}}\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]_{b_{i} a_{i+1}} Mbiai+1=2 1[0110]biai+1
则原式 = M b i a i + 1 ( ∣ 00 ⟩ + ∣ 11 ⟩ ) b i a i + 1 =M_{b_{i} a_{i+1}}(|00\rangle+|11\rangle)_{b_{i} a_{i+1}} =Mbiai+1(00+11)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值