使用最大纠缠态来制备MPS(with periodic boundary conditions)

前提背景

Affleck, Kennedy, Lieb, and Tasaki(AKLT)模型:
AKLT模型:是一维的延伸量子(海森堡自旋模型)
通过构造,AKLT哈密顿量的基态是带有连接每个相邻位点对的单价键的价键固体。在图形上,这可以表示为:
在这里插入图片描述
在这里,实心点表示自旋1/2,并处于单重态。连接自旋1/2的线是表示单线态的价键。椭圆是投影算子,它们将两个自旋1/2一起“绑定”为一个自旋1,突出自旋0或单重态子空间,并仅保留自旋1或三重态子空间。符号“ +”,“ 0”和“-”标记了标准自旋1基态( S z S^{z} Sz运算符)。

正文:

对于一个具有𝑛个自由度的量子多体系统:
在这里插入图片描述
在这里插入图片描述
问题:一共 d N d^N dN个元素这是一个巨大无比的张量计算机根本无法存储
解决方案:将其化为一个近似的特殊的张量网络表达,下面以MPS态表示
矩阵乘积态有两种不同的MPS形式,在本文中,我们将运用最大纠缠态来制备周期边界条件的MPS(PBC-MPS)如图所示:
在这里插入图片描述
在这里插入图片描述


在这里插入图片描述
注:其中每个粒子各自的取值情况数为2,分别为0,1
a i b i a_{i}b_{i} aibi这两个粒子是两个不相关的粒子

1 2 ( ∣ 01 ⟩ − ∣ 10 ⟩ ) b i a i + 1 \frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)_{b_{i} a_{i+1}} 2 1(0110)biai+1

第一步

我们对这个纠缠做一个变换:
1 2 ( ∣ 01 ⟩ − ∣ 10 ⟩ ) b i a i + 1 = 1 2 [ 0 1 − 1 0 ] b i a i + 1 ( ∣ 00 ⟩ + ∣ 11 ⟩ ) b i a i + 1 \frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)_{b_{i} a_{i+1}}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]_{b_{i} a_{i+1}}(|00\rangle+|11\rangle)_{b_{i} a_{i+1}} 2 1(0110)biai+1=2 1[0110]biai+1(00+11)biai+1
证明:


①方法一
因为:
∣ 0 ⟩ = ( 1 , 0 ) T , ∣ 1 ⟩ = ( 0 , 1 ) T |0\rangle = (1,0)^T,|1\rangle = (0,1)^T 0=(1,0)T,1=(0,1)T
所以 ∣ 01 ⟩ = ( 0 , 1 , 0 , 0 ) T , ∣ 10 ⟩ = ( 0 , 0 , 1 , 0 ) T , ∣ 00 ⟩ = ( 1 , 0 , 0 , 0 ) T , ∣ 11 ⟩ = ( 0 , 0 , 0 , 1 ) T |01\rangle = (0,1,0,0)^T,|10\rangle = (0,0,1,0)^T,|00\rangle = (1,0,0,0)^T,|11\rangle = (0,0,0,1)^T 01=(0,1,0,0)T,10=(0,0,1,0)T,00=(1,0,0,0)T,11=(0,0,0,1)T
∣ 01 ⟩ − ∣ 10 ⟩ = ( 0 , 1 , − 1 , 0 ) T , ∣ 00 ⟩ + ∣ 11 ⟩ = ( 1 , 0 , 0 , 1 ) T |01\rangle-|10\rangle = (0,1,-1,0)^T,|00\rangle+|11\rangle = (1,0,0,1)^T 0110=(0,1,1,0)T,00+11=(1,0,0,1)T
∣ 01 ⟩ − ∣ 10 ⟩ = ( 0 , 1 , − 1 , 0 ) T |01\rangle-|10\rangle = (0,1,-1,0)^T 0110=(0,1,1,0)Treshape为矩阵
[ 0 1 − 1 0 ] \left[ \begin{matrix} 0 & 1 \\ -1 & 0 \end{matrix} \right] [0110] ∣ 00 ⟩ + ∣ 11 ⟩ = ( 1 , 0 , 0 , 1 ) T |00\rangle+|11\rangle = (1,0,0,1)^T 00+11=(1,0,0,1)Treshape为矩阵
[ 1 0 0 1 ] \left[ \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right] [1001]因为:
[ 0 1 − 1 0 ] × [ 1 0 0 1 ] = [ 0 1 − 1 0 ] \left[ \begin{matrix} 0 & 1 \\ -1 & 0 \end{matrix} \right] \times \left[ \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right] = \left[ \begin{matrix} 0 & 1 \\ -1 & 0 \end{matrix} \right] [0110]×[1001]=[0110] [ 0 1 − 1 0 ] \left[ \begin{matrix} 0 & 1 \\ -1 & 0 \end{matrix} \right] [0110]reshape为向量即为 ( 0 , 1 , − 1 , 0 ) T = ∣ 01 ⟩ − ∣ 10 ⟩ (0,1,-1,0)^T = |01\rangle-|10\rangle (0,1,1,0)T=0110
②方法二
由①可知 ∣ 00 ⟩ + ∣ 11 ⟩ = ( 1 , 0 , 0 , 1 ) T |00\rangle+|11\rangle = (1,0,0,1)^T 00+11=(1,0,0,1)Treshape出来的是一个单位阵,与任何矩阵乘积不改变原来矩阵形式


M b i a i + 1 = 1 2 [ 0 1 − 1 0 ] b i a i + 1 M_{b_{i} a_{i+1}} = \frac{1}{\sqrt{2}}\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]_{b_{i} a_{i+1}} Mbiai+1=2 1[0110]biai+1
则原式 = M b i a i + 1 ( ∣ 00 ⟩ + ∣ 11 ⟩ ) b i a i + 1 =M_{b_{i} a_{i+1}}(|00\rangle+|11\rangle)_{b_{i} a_{i+1}} =Mbiai+1(00+11)biai+1
因为 ∣ 00 ⟩ + ∣ 11 ⟩ |00\rangle+|11\rangle 00+11为单位阵,对于它的作用相当与对 b i a i + 1 b_{i} a_{i+1} biai+1的作用
则对于整个模型而言即为: ∑ b i a i + 1 M b i a i + 1 ∣ b i a i + 1 ⟩ \sum_{b_{i} a_{i+1}} M_{b_{i} a_{i+1}}\left|b_{i} a_{i+1}\right\rangle biai+1Mbiai+1biai+1

第二步

在这里插入图片描述

注:再次声明——这两个粒子是两个不相关的粒子。各自的取值情况数为2,因此总的希尔伯特空间维度为4。但是我们可以将它们投影到一个更小的空间上去。

①:定义投影算符 ( σ i ∈ { + 1 , 0 , − 1 } ) \left(\sigma_{i} \in\{+1,0,-1\}\right) (σi{+1,0,1}) :
P i = ∑ a i b i σ i N a i b i σ i ∣ σ i ⟩ ⟨ a i b i ∣ \begin{array}{l} P_{i}=\sum_{a_{i} b_{i} \sigma_{i}} N_{a_{i} b_{i}}^{\sigma_{i}}\left|\sigma_{i}\right\rangle\left\langle a_{i} b_{i}\right| \end{array} Pi=aibiσiNaibiσiσiaibi其中: N ( + 1 ) = [ 1 0 0 0 ] , N ( 0 ) = [ 0 1 2 1 2 0 ] , N ( − 1 ) = [ 0 0 0 1 ] \begin{array}{l} N^{(+1)}=\left[\begin{array}{ll} 1 & 0 \\ 0 & 0 \end{array}\right], \quad N^{(0)}=\left[\begin{array}{cc} 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 \end{array}\right], \quad N^{(-1)}=\left[\begin{array}{ll} 0 & 0 \\ 0 & 1 \end{array}\right] \end{array} N(+1)=[1000],N(0)=[02 12 10],N(1)=[0001]

②:将投影算符 P i P_{i} Pi展开观察:
在这里插入图片描述

P i = ∑ a i b i σ i N a i b i σ i ∣ σ i ⟩ ⟨ a i b i ∣ P_{i}=\sum_{a_{i} b_{i} \sigma_{i}} N_{a_{i} b_{i}}^{\sigma_{i}}\left|\sigma_{i}\right\rangle\left\langle a_{i} b_{i}\right| Pi=aibiσiNaibiσiσiaibi
= N 00 ( + 1 ) ∣ + 1 ⟩ ⟨ 00 ∣ + N 01 ( 0 ) ∣ 0 ⟩ ⟨ 01 ∣ + N 10 ( 0 ) ∣ 0 ⟩ ⟨ 10 ∣ + N 11 ( − 1 ) ∣ − 1 ⟩ ⟨ 11 ∣ =N_{00}^{(+1)}|+1\rangle\langle 00|+N_{01}^{(0)}| 0\rangle\langle 01|+N_{10}^{(0)}| 0\rangle\langle 10|+N_{11}^{(-1)}|-1\rangle\langle 11| =N00(+1)+100+N01(0)001+N10(0)010+N11(1)111
= [ 1 0 0 0 ] ∣ + 1 ⟩ ⟨ 00 ∣ + [ 0 1 2 1 2 0 ] ∣ 0 ⟩ ⟨ 01 ∣ + [ 0 1 2 1 2 0 ] ∣ 0 ⟩ ⟨ 10 ∣ + [ 0 0 0 1 ] ∣ − 1 ⟩ ⟨ 11 ∣ =\left[\begin{array}{cc}1 & 0 \\ 0 & 0\end{array}\right]|+1\rangle\langle 00|+\left[\begin{array}{cc}0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0\end{array}\right]| 0\rangle\langle 01|+\left[\begin{array}{cc}0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0\end{array}\right]| 0\rangle\langle 10|\\+\left[\begin{array}{cc}0 & 0 \\ 0 & 1\end{array}\right]|-1\rangle\langle 11| =[1000]+100+[02 12 10]001+[02 12 10]010+[0001]111

③:将投影算符 P i P_{i} Pi作用在粒子上
∣ Ψ ⟩ = P 1 P 2 ⋯ P N ∑ b 1 a 2 M b 1 a 2 ∣ b 1 a 2 ⟩ ∑ b 2 a 3 M b 2 a 3 ∣ b 2 a 3 ⟩ ⋯ ∑ b N a 1 M b N a 1 ∣ b N a 1 ⟩ |\Psi\rangle=P_{1} P_{2} \cdots P_{N} \sum_{b_{1} a_{2}} M_{b_{1} a_{2}}\left|b_{1} a_{2}\right\rangle\sum_{b_{2} a_{3}} M_{b_{2} a_{3}}| b_{2} a_{3}\rangle \cdots \sum_{b_{N} a_{1}} M_{b_{N} a_{1}}\left|b_{N} a_{1}\right\rangle Ψ=P1P2PNb1a2Mb1a2b1a2b2a3Mb2a3b2a3bNa1MbNa1bNa1
= ∑ a 1 b 1 σ 1 N a 1 b 1 σ 1 ∣ σ 1 ⟩ ⟨ a 1 b 1 ∣ ∑ a 2 b 2 σ 2 N a 2 b 2 σ 2 ∣ σ 2 ⟩ ⟨ a 2 b 2 ∣ ⋯ ∑ a N b N σ N N a N b N σ N ∣ σ N ⟩ ⟨ a N b N ∣ ∑ b 1 a 2 M b 1 a 2 ∣ b 1 a 2 ⟩ ∑ b 2 a 3 M b 2 a 3 ∣ b 2 a 3 ⟩ ⋯ ∑ b N a 1 M b N a 1 ∣ b N a 1 ⟩ =\sum_{a_{1} b_{1} \sigma_{1}} N_{a_{1} b_{1}}^{\sigma_{1}}|\sigma_{1}\rangle\langle a_{1} b_{1}| \sum_{a_{2} b_{2} \sigma_{2}} N_{a_{2} b_{2}}^{\sigma_{2}}|\sigma_{2}\rangle\langle a_{2} b_{2}| \cdots \sum_{a_{N} b_{N} \sigma_{N}} N_{a_{N} b_{N}}^{\sigma_{N}}| \sigma_{N}\rangle \langle a_{N} b_{ N} | \\ \sum_{b_{1} a_{2}} M_{b_{1} a_{2}}| b_{1} a_{2}\rangle \sum_{b_{2} a_{3}} M_{b_{2} a_{3}}| b_{2} a_{3}\rangle \cdots \sum_{b_{N} a_{1}} M_{b_{N} a_{1}}|b_{N} a_{1}\rangle =a1b1σ1Na1b1σ1σ1a1b1a2b2σ2Na2b2σ2σ2a2b2aNbNσNNaNbNσNσNaNbNb1a2Mb1a2b1a2b2a3Mb2a3b2a3bNa1MbNa1bNa1
注: ⟨ a 1 b 1 ∣ ⟨ a 2 b 2 ∣ ⋯ ⟨ a N b N ∣ 与 ∣ b 1 a 2 ⟩ ∣ b 2 a 3 ⟩ ⋯ ∣ b N a 1 ⟩ \langle a_{1} b_{1}|\langle a_{2} b_{2}|\cdots\langle a_{N} b_{N}|与| b_{1} a_{2}\rangle| b_{2} a_{3}\rangle\cdots|b_{N} a_{1}\rangle a1b1a2b2aNbNb1a2b2a3bNa1计算为 ⟨ a 1 b 1 a 2 b 2 ⋯ a N b N ∣ b 1 a 2 b 2 a 3 ⋯ b N a 1 ⟩ \langle a_{1} b_{1}a_{2} b_{2}\cdots a_{N} b_{N}| b_{1} a_{2}b_{2} a_{3}\cdots b_{N} a_{1}\rangle a1b1a2b2aNbNb1a2b2a3bNa1(其中: ⟨ a N ∣ a N ⟩ \langle a_{N} | a_{N}\rangle aNaN = ⟨ b N ∣ b N ⟩ \langle b_{N} | b_{N}\rangle bNbN =1)
所以其最后的值为1

= ∑ a i b i σ i ( N a 1 b 1 σ 1 M b 1 a 2 ) ⋯ ( N a N b N σ N M b N a 1 ) ∣ σ 1 , ⋯   , σ N ⟩ =\sum_{a_{i} b_{i} \sigma_{i}}\left(N_{a_{1} b_{1}}^{\sigma_{1}} M_{b_{1} a_{2}}\right) \cdots\left(N_{a_{N} b_{N}}^{\sigma_{N}} M_{b_{N} a_{1}}\right)\left|\sigma_{1}, \cdots, \sigma_{N}\right\rangle =aibiσi(Na1b1σ1Mb1a2)(NaNbNσNMbNa1)σ1,,σN
在这里插入图片描述

∣ Ψ ⟩ = ∑ a i b i σ i ( N a 1 b 1 σ 1 M b 1 a 2 ) ⋯ ( N a N b N σ N M b N a 1 ) ∣ σ 1 , ⋯   , σ N ⟩ \begin{array}{c}|\Psi\rangle=\sum_{a_{i} b_{i} \sigma_{i}}\left(N_{a_{1} b_{1}}^{\sigma_{1}} M_{b_{1} a_{2}}\right) \cdots\left(N_{a_{N} b_{N}}^{\sigma_{N}} M_{b_{N} a_{1}}\right)\left|\sigma_{1}, \cdots, \sigma_{N}\right\rangle\end{array} Ψ=aibiσi(Na1b1σ1Mb1a2)(NaNbNσNMbNa1)σ1,,σN N a 1 b 1 σ 1 M b 1 a 2 = A a 1 a 2 σ 1 , ⋯   , N a N b N σ N M b N a 1 = A a N a 1 σ 1 \begin{array}{c} N_{a_{1} b_{1}}^{\sigma_{1}} M_{b_{1} a_{2}}=A_{a_{1} a_{2}}^{\sigma_{1}}, \cdots, N_{a_{N} b_{N}}^{\sigma_{N}} M_{b_{N} a_{1}}=A_{a_{N} a_{1}}^{\sigma_{1}} \end{array} Na1b1σ1Mb1a2=Aa1a2σ1,,NaNbNσNMbNa1=AaNa1σ1
∣ Ψ ⟩ = ∑ a i b i σ i ( A a 1 a 2 σ 1 ) ⋯ ( A a N a 1 σ 1 ) ∣ σ 1 , ⋯   , σ N ⟩ \begin{array}{c} |\Psi\rangle=\sum_{a_{i} b_{i} \sigma_{i}}\left(A_{a_{1} a_{2}}^{\sigma_{1}}\right) \cdots\left(A_{a_{N} a_{1}}^{\sigma_{1}}\right)\left|\sigma_{1}, \cdots, \sigma_{N}\right\rangle\end{array} Ψ=aibiσi(Aa1a2σ1)(AaNa1σ1)σ1,,σN

第三步

由第二步中 A a 1 a 2 σ 1 = N a 1 b 1 σ 1 M b 1 a 2 , ⋯   , A a N a 1 σ 1 = N a N b N σ N M b N a 1 \begin{array}{c} A_{a_{1} a_{2}}^{\sigma_{1}}=N_{a_{1} b_{1}}^{\sigma_{1}} M_{b_{1} a_{2}}, \cdots, A_{a_{N} a_{1}}^{\sigma_{1}}=N_{a_{N} b_{N}}^{\sigma_{N}} M_{b_{N} a_{1}} \end{array} Aa1a2σ1=Na1b1σ1Mb1a2,,AaNa1σ1=NaNbNσNMbNa1我们来看看算符 A A A的值:
A ( + 1 ) = N ( + 1 ) M = [ 1 0 0 0 ] [ 0 1 2 − 1 2 0 ] = [ 0 1 2 0 0 ] A^{(+1)} = N^{(+1)}M= \left[\begin{array}{cc}1 & 0 \\ 0 & 0\end{array}\right] \left[\begin{array}{cc}0 & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & 0\end{array}\right] = \left[\begin{array}{cc}0 & \frac{1}{\sqrt{2}} \\ 0 & 0\end{array}\right] A(+1)=N(+1)M=[1000][02 12 10]=[002 10]
A ( 0 ) = N ( 0 ) M = [ 0 1 2 1 2 0 ] [ 0 1 2 − 1 2 0 ] = [ − 1 2 0 0 1 2 ] A^{(0)} =N^{(0)}M= \left[\begin{array}{cc}0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0\end{array}\right] \left[\begin{array}{cc}0 & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & 0\end{array}\right] = \left[\begin{array}{cc}-\frac{1}{2} & 0 \\ 0 & \frac{1}{2}\end{array}\right] A(0)=N(0)M=[02 12 10][02 12 10]=[210021]
A ( − 1 ) = N ( − 1 ) M = [ 0 0 0 1 ] [ 0 1 2 − 1 2 0 ] = [ 0 0 − 1 2 0 ] A^{(-1)} =N^{(-1)}M= \left[\begin{array}{cc}0 & 0 \\ 0 & 1\end{array}\right] \left[\begin{array}{cc}0 & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & 0\end{array}\right] = \left[\begin{array}{cc}0 & 0 \\ -\frac{1}{\sqrt{2}} & 0\end{array}\right] A(1)=N(1)M=[0001][02 12 10]=[02 100]
矩阵 A a i a i + 1 σ i A_{a_{i} a_{i+1}}^{\sigma_{i}} Aaiai+1σi的值取决于 M M M的值,即最终MPS中各张量的关联关系与每一个纠缠态的纠缠特性有关系,而这个特性就是由 M M M矩阵决定的。
在这里插入图片描述

注:
σ i \sigma_{i} σi是开放的indices,在一些文献中称为“fixed collection of physical indices” 。
a i a_i ai很明显,是粒子的编号,在这里叫做“connecting bond indices”。

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值