深入理解 AI 大模型:核心能力与应用场景全解析

AI大模型是什么

通过概念考察的方式了解AI大模型,拆开来看。

  • AI:包含很多术语,如:模式识别、自然语言处理、神经网络、机器学习、深度学习、强化学习、人类反馈强化学习等。

  • 类比:AI是电力–吴恩达。就像电力技术,是一种通用技术,对很多设备起作用,同样的AI可以赋能各种场景。

  • 大模型:把LM比作人的大脑。

  • 大参数大规模。参数就是脑细胞,脑细胞越多通常这个人越聪明,参数越多的LM通常越智能。

分类

  • 语言大模型:ChatGPT、Gemini、文心一言、通义千问

  • 代码大模型:阿里-通义灵码,Copilot

  • 视觉大模型:

  • 文生图:Midjourney,Stable Diffusion

  • 文生视频:Sora

  • 多模态大模型:GPT4

大模型参考链接

  1. 文生图,图生图,文生视频

  2. Midjourney(付费): 在线试用 https://midjourney.co/zh/generator

  3. Stable Diffusion(免费):开源免费,几乎所有模型、插件、启动器都来自开源社区(civitai.com,tusiart.cn,huggingface.co)

  4. 音色克隆(声音克隆)

  5. 视频配音

  6. So-vits-svc:https://github.com/voicepaw/so-vits-svc-fork/blob/main/README_zh_CN.md

  7. GPT-SoVITS:https://github.com/RVC-Boss/GPT-SoVITS/blob/main/docs/cn/README.md

核心能力

  • 自然语言理解

总结和提取

提取需要的内容,包含观点和主题

情感分析

识别和理解文本中的情感和情绪

文本转换

文本翻译,格式转换,拼写语法检查

  • 推理能力:生成式 AI 的关键

  • 逻辑推理: 根据已知事实和规则,通过推理来推导出新的结论或解决问题。

  • 扩写: 根据已有文本内容生成新的文本,可以是对已有内容的延伸、补充或创造性扩展。

局限

  • 数据集是静态的:

  • 大模型的知识参数是静态的,在模型训练完成后就固定下来的,更新知识需要重新训练,成本较高,一般由模型厂商完成。

  • 缺乏特定领域的知识

基础大模型接受的是通用任务的训练。

  • 幻觉“黑匣子”:

很难理解大模型基于哪些数据来源得出的结论。大模型有时会生成不准确或毫无根据的信息。需要接受高质量的信息输入才能减少这种情况。

能干啥

这里只讨论应用场景更广的语言大模型

大语言模型是通用的模型,在广泛的任务中表现出色。可以执行多种特定任务(例如情感分析、命名实体识别或数学推理)。

  1. 一种全新的交互方式

在信息获取方面,与搜索引擎对比

  • 搜索引擎是针对关键词的检索,AI是基于语义的检索。

  • 前者只能返回信息,后者可以解读信息。

  • 前者每次搜索是独立的,后者则可以关联上下文,进行多轮对话。

LLM + 客服台 = 智能客服

LLM + 文档 = 对话式文档阅读器

  1. 专家系统

专家系统:使用人类专家设计的计算机模型来处理现实世界中需要专家作出解释的复杂问题,可以得出与专家相同的结论。

知识问答:基于专有知识的智能问答,随叫随到的个人专家

  • 工作流程:文档预处理+文本召回

  • 前置条件: 需要提供相关文档语料,较高质量的文档才有较高问答准确率

  • 程度: 问答准确率80%~90%(去年测试数据)

  • 局限: 无法识别图片,复杂表格识别不佳

数据分析:一句话生成统计图表,对数据进行快速洞察

  • 前置条件: 需要具备结构化数据

  • 其他场景: 月度、年度报告展示,展现形式可以是饼状图、柱状图、折线图

  1. 智能代理

编排AI自动化工作流,让AI成为高级助手代替操作

  • 前置条件: 成熟业务、基础数据,api组件

  • 其他场景: 适用于营销、运营、管理场景

  • 查询航班、差旅报销。。。

  1. 其他

  • 个人助理: 每日工作总结,PPT助手

  • 个人助手: 餐饮助手、差旅助手

  • 数字化员工: 销售助手,商机跟进

零基础入门AI大模型

今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

5.免费获取

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码或者点击以下链接都可以免费领取【保证100%免费】

点击领取 《AI大模型&人工智能&入门进阶学习资源包》

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值