第(一)篇:无监督学习——从数据驱动的风险因素到分层风险平价

本文介绍了无监督学习在金融市场中的应用,重点关注降维和聚类技术。通过主成分分析(PCA)、独立成分分析(ICA)等方法进行线性降维,识别数据驱动的风险因素。同时探讨了包括k均值、分层聚类在内的聚类算法,用于构建稳健的投资组合。此外,还涉及了如何使用流形学习和T-SNE等工具可视化高维数据。
摘要由CSDN通过智能技术生成

前言:本专栏是【人工智能与财务】课程作业,笔者将学习ML4T一书,并在中国市场中应用机器学习算法进行分析。
其中,笔者在这里主要选择的是第13章无监督学习的内容。在本书的源代码中,本章内容共为4个部分,共17篇代码,将努力复现这些代码。本文,先大致讲述一下本章的思路。

当数据集仅包含特征却没有结果时,或者说我们想要为数据划分新的标签时,无监督学习就派上大用场了。

首先在无监督学习中,降维和聚类是无监督学习的主要任务:

  • 降维将现有特征转换为一个新的、更小的集合,同时最大限度地减少信息丢失。
  • 聚类算法识别和分组相似的观察或特征,而不是识别新特征。算法的不同之处在于它们如何定义观察的相似性以及它们对结果组的假设。

本章的内容大致包括:

  1. 主成分和独立成分分析(PCA 和 ICA)
  2. 如何执行线性降维
  3. 使用 PCA 从资产回报中识别数据驱动的风险因素和特征组合
  4. 使用流形学习有效地可视化非线性、高维数据
  5. 使用 T-SNE 和 UMAP 探索高维图像数据 k 均值、分层
  6. 基于密度的聚类算法如何工作
  7. 使用凝聚聚类构建具有分层风险平价的稳健投资组合

本章所有的代码如下所示:
在这里插入图片描述在这里插入图片描述接下来就开始进行代码的实现。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值