题目:
Given the root
of a binary tree, find the maximum value V
for which there exist different nodes A
and B
where V = |A.val - B.val|
and A
is an ancestor of B
.
A node A
is an ancestor of B
if either: any child of A
is equal to B
, or any child of A
is an ancestor of B
.
Example 1:
Input: root = [8,3,10,1,6,null,14,null,null,4,7,13] Output: 7 Explanation: We have various ancestor-node differences, some of which are given below : |8 - 3| = 5 |3 - 7| = 4 |8 - 1| = 7 |10 - 13| = 3 Among all possible differences, the maximum value of 7 is obtained by |8 - 1| = 7.
Example 2:
Input: root = [1,null,2,null,0,3] Output: 3
Constraints:
- The number of nodes in the tree is in the range
[2, 5000]
. 0 <= Node.val <= 105
思路:
本质上是DFS tree traverse,每条路径记录遇到的最大值和最小值,在空节点返回max(max_value, min_value)即可。
代码:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int maxAncestorDiff(TreeNode* root) {
return dfs(0,100000,root);
}
private:
int dfs(int big, int small, TreeNode* root)
{
if(!root)
return big-small;
big=max(big,root->val);
small=min(small,root->val);
int ans=max(dfs(big,small, root->left),dfs(big,small,root->right));
return ans;
}
};