概率论笔记4.2.1方差

本文介绍了方差的概念,作为衡量数据偏离平均值程度的指标,方差通过计算每个数值与均值差的平方的期望值来得到。标准差则是方差的平方根,提供了一个更直观的量度。强调了在处理X和Y独立变量时,D(X±Y)=DX+DY的性质。同时对比了期望和方差的性质,探讨它们在概率论和统计学中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

4.2.1方差

定义

如果说均值表示的是平均值,那么方差就是代表偏离程度

方差: D(X) = E(X - EX)^2 其实这个公式在做题时不太常用

标准差为方差的开根
在这里插入图片描述
注意

最后一条公式前面的是先平方再求期望,后面的是先求期望再平方,而且最下面的那条公式用的多

例题
在这里插入图片描述
在这里插入图片描述

性质

在这里插入图片描述
注意最后一条性质,D(X±Y) = DX + DY 首先要满足的条件是X,Y独立,然后就是等号右边永远是加号 “+”

证明
在这里插入图片描述
在这里插入图片描述

期望和方差性质的对比

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值