线性代数笔记4.4(二)非齐次线性方程组解的结构

本文详细介绍了非齐次线性方程组的解的结构,包括导出组的概念及其性质。非齐次线性方程组的解可以表示为一个特解加上齐次方程组的通解的线性组合。通过将增广矩阵转化为行最简形,可以确定特解,并结合齐次方程组的基础解系求得通解。此外,文中还提到了考研例题的解题步骤,强调了解题过程中自由未知量的处理方法。
摘要由CSDN通过智能技术生成

4.4非齐次线性方程组解的结构

导出组

首先

Ax = b是一个非齐次线性方程组,若Ax = 0,则叫这个齐次方程组为导出组

性质

  1. 若a1,a2是Ax = b的解,则a1 - a2 是Ax = 0的解,即非齐次方程组的解相减得到齐次方程组的解
  2. 非齐次线性方程组的解与导出组的解相加以后,还是非齐次方程组的解

在这里插入图片描述

非齐次线性方程组解的结构

非齐次线性方程组的解:等于一个Ax = b的一个特解 + Ax = 0的基本线性组合
在这里插入图片描述
求非齐次线性方程组的解就转换为:非齐次方程组的特解和Ax = 0的基础解析

求齐次方程组的基础解系

系数矩阵化为行最简形,非零元为1写在等号左边,剩下移项写在右边,带入单位向量得到的结果再与单位向量接长即可

如何求非齐次方程组的特解?

求Ax = b的特解,先拿非齐次线性方程组的增广系数矩阵,只做初等行变换化为行最简形得到相关的方程组。然后自由未知数取0带入求得结果再与0接长就是一个特解 (接长的时候需要考虑顺序!!!)

然后直接写出线性方程组的通解,只需要去掉系数就可以得到解的方程组了,然后按照上一节课讲得做法写出通解再相加就好

具体情况看图更直观
在这里插入图片描述
总结

  1. 写出增广系数矩阵只做行变换,化为行简化
  2. 非零行的首非零元的1留在左边,其余挪到右边,写出非齐次线性方程组,指出谁是自由未知量(不在左边都是自由未知量)
  3. 含自由未知量均取0得到一个特解
  4. 另通解方程组右边常数均为0,等齐次方程组的通解,指出谁是自由未知量,带入单位向量,得到线性方程组的基础解系
  5. 非齐次特解+齐次通解
    在这里插入图片描述
    考研的一道例题

求通解

首先4元3秩,显然自由未知量只有一个,则导出组只有一个解,而特解可以用α1

用两次性质构造等式就能求出线性组合了
在这里插入图片描述
略微修改之后也不难
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值