从脑机接口到神经科学研究,脑电波(EEG)采集是理解大脑活动的核心技术。本文将从物理原理、电极类型、模数转换器处理及电极布局标准(10-20系统)四大维度,系统解析EEG信号采集的核心技术细节。
一、物理原理:脑电波如何被捕捉?
脑电波的本质是大脑皮层神经元群同步放电产生的微弱电信号(μV级)。我们采集的实际上是电压信号而不是有些人误以为的电流,其物理原理可概括为以下过程:
-
神经元电活动
- 神经元通过动作电位(Action Potential)传递信息,突触后电位(PSP)在细胞膜内外形成局部电流。
- 当大量神经元(约10^4个)同步激活时,其电场效应可穿透颅骨,在头皮表面形成可测量的电位差。
-
信号传播与衰减
- 脑电信号需穿过脑脊液、颅骨和头皮组织,导致信号衰减约90%(如皮层1 mV→头皮10 μV)。
- 低频信号(<100 Hz)穿透性更强,高频信号(如γ波)易被组织吸收,需高灵敏度设备捕捉。
-
信号特性
- 频率范围:0.5-100 Hz,主要分为δ(0.5-4 Hz)、θ(4-8 Hz)、α(8-13 Hz)、β(13-30 Hz)、γ(30-100 Hz)。
- 幅值范围:10-100 μV,需高增益放大器(×1000-×10000)放大至mV级以供采集。
二、电极类型与特性:从湿电极到柔性干电极
电极是信号采集的第一道门户,其性能直接影响数据质量。常见类型对比如下:
类型 | 材质与结构 | 优点 | 缺点 | 适用场景 |
---|---|---|---|---|
湿电极 | Ag/AgCl + 导电膏(如KCl凝胶) | 阻抗低(<5 kΩ),信号稳定 | 需频繁补充导电膏,佩戴繁琐 | 实验室高精度研究(如癫痫监测) |
干电极 | 金属梳状结构 | 无需导电膏,快速佩戴 | 阻抗高(>50 kΩ),易受运动干扰 | 消费级设备(如冥想头环) |
半干电极 | 微针阵列 + 固态电解质膜 | 阻抗适中(10-20 kΩ),寿命长 | 成本高,需定制设计 | 长期监测(如睡眠研究) |
关键技术指标:
- 接触阻抗:需低于20 kΩ(高阻抗会引入噪声);
- 极化效应:Ag/AgCl电极极化电压小(<1 mV),适合长期使用;
- 生物兼容性:避免金属过敏(如钛电极更安全)。
三、模数转换器(ADC)的信号处理流程
EEG信号需经放大、滤波和数字化处理。以医疗级ADC芯片ADS1299(不少脑电设备包括openbci采用的都是这款芯片)为例,其处理流程如下:
1. 模拟前端处理
- 仪表放大器(IA):
- 差分放大信号,抑制共模干扰(如50 Hz工频噪声)。
- ADS1299支持可编程增益(×1-×12),适配不同幅值信号。
- 右腿驱动(RLD)电路:
- 主动抵消共模电压,提升共模抑制比(CMRR > 110 dB)。
2. 滤波处理
- 硬件抗混叠滤波:
- 内置低通滤波器(截止频率可调),防止高频噪声混叠(如ADS1299默认-3 dB点为40 kHz)。
- 陷波滤波:
- 可选软件配置50/60 Hz陷波,消除电源干扰。
3. 模数转换
- 24位高分辨率:可分辨最小0.1 μV信号(LSB = Vref/(2^24))。
- 采样率可调:支持250 SPS至16 kSPS,兼顾功耗与带宽需求。
ADS1299核心优势:
- 8通道同步采样,相位误差趋近于零。
- 内置基准电压源和自校准功能,减少外部电路依赖。
- 专门处理生物电信号,电路设计的时候直接采用它比起自己设计电路要轻松许多。
四、10-20系统:电极定位的“坐标地图”
10-20系统是国际通用的电极放置标准,确保不同设备数据可比性。 也就是人为约定的电极放置位置,这样大家都这么放置,我们就用编号来描述位置,就像门牌号一样。当你看到别人的文章中写着下图中的某个编号,你就马上知道这个指的是哪个位置。
1. 定位规则
- 基准点测量:
- 以**鼻根(Nasion)和枕外隆凸(Inion)**为前后基准,头围周长确定电极间距(10%或20%)。
- 电极命名:
- 字母代表脑区:F(额叶)、C(中央)、P(顶叶)、O(枕叶)、T(颞叶)。
- 数字表示位置:奇数左半球,偶数右半球,z为中线。
- 示例:C3 = 左中央区,Pz = 顶叶中线。
2. 扩展系统
- 10-10系统:在10-20基础上增加62个电极,用于高密度EEG研究;
- 10-5系统:电极间距更密(5%头围),适用于脑源定位分析。
3. 实际应用
- 临床诊断:癫痫病灶定位需固定Fp1/Fp2等颞区电极;
- 科研实验:P300成分分析常关注Pz、Cz点。
五、技术挑战与未来方向
- 噪声抑制:运动伪迹和肌电干扰仍是动态采集的难题(如自适应滤波算法);
- 柔性电子:纳米材料电极(如石墨烯)可降低接触阻抗,提升穿戴舒适性;
- 片上系统(SoC):集成ADC与AI芯片,实现实时脑电特征提取(如癫痫预警)。
结语
脑电波采集是生物电信号处理技术的集大成者,需融合生物物理、电子工程和算法设计。理解电极特性、ADC处理逻辑及10-20系统,是开展EEG研究的基石。未来,随着柔性电子与AI技术的进步,脑电采集将更便携、智能,推动脑科学走向日常生活。