脑电波采集原理与技术详解

从脑机接口到神经科学研究,脑电波(EEG)采集是理解大脑活动的核心技术。本文将从物理原理、电极类型、模数转换器处理及电极布局标准(10-20系统)四大维度,系统解析EEG信号采集的核心技术细节。


一、物理原理:脑电波如何被捕捉?

脑电波的本质是大脑皮层神经元群同步放电产生的微弱电信号(μV级)。我们采集的实际上是电压信号而不是有些人误以为的电流,其物理原理可概括为以下过程:

  1. 神经元电活动

    • 神经元通过动作电位(Action Potential)传递信息,突触后电位(PSP)在细胞膜内外形成局部电流。
    • 当大量神经元(约10^4个)同步激活时,其电场效应可穿透颅骨,在头皮表面形成可测量的电位差。
  2. 信号传播与衰减

    • 脑电信号需穿过脑脊液、颅骨和头皮组织,导致信号衰减约90%(如皮层1 mV→头皮10 μV)。
    • 低频信号(<100 Hz)穿透性更强,高频信号(如γ波)易被组织吸收,需高灵敏度设备捕捉。
  3. 信号特性

    • 频率范围:0.5-100 Hz,主要分为δ(0.5-4 Hz)、θ(4-8 Hz)、α(8-13 Hz)、β(13-30 Hz)、γ(30-100 Hz)。
    • 幅值范围:10-100 μV,需高增益放大器(×1000-×10000)放大至mV级以供采集。

二、电极类型与特性:从湿电极到柔性干电极

电极是信号采集的第一道门户,其性能直接影响数据质量。常见类型对比如下:

类型材质与结构优点缺点适用场景
湿电极Ag/AgCl + 导电膏(如KCl凝胶)阻抗低(<5 kΩ),信号稳定需频繁补充导电膏,佩戴繁琐实验室高精度研究(如癫痫监测)
干电极金属梳状结构无需导电膏,快速佩戴阻抗高(>50 kΩ),易受运动干扰消费级设备(如冥想头环)
半干电极微针阵列 + 固态电解质膜阻抗适中(10-20 kΩ),寿命长成本高,需定制设计长期监测(如睡眠研究)

关键技术指标

  • 接触阻抗:需低于20 kΩ(高阻抗会引入噪声);
  • 极化效应:Ag/AgCl电极极化电压小(<1 mV),适合长期使用;
  • 生物兼容性:避免金属过敏(如钛电极更安全)。
  • 湿电极
    干电极

三、模数转换器(ADC)的信号处理流程

EEG信号需经放大、滤波和数字化处理。以医疗级ADC芯片ADS1299(不少脑电设备包括openbci采用的都是这款芯片)为例,其处理流程如下:

1. 模拟前端处理

  • 仪表放大器(IA)
    • 差分放大信号,抑制共模干扰(如50 Hz工频噪声)。
    • ADS1299支持可编程增益(×1-×12),适配不同幅值信号。
  • 右腿驱动(RLD)电路
    • 主动抵消共模电压,提升共模抑制比(CMRR > 110 dB)。

2. 滤波处理

  • 硬件抗混叠滤波
    • 内置低通滤波器(截止频率可调),防止高频噪声混叠(如ADS1299默认-3 dB点为40 kHz)。
  • 陷波滤波
    • 可选软件配置50/60 Hz陷波,消除电源干扰。

3. 模数转换

  • 24位高分辨率:可分辨最小0.1 μV信号(LSB = Vref/(2^24))。
  • 采样率可调:支持250 SPS至16 kSPS,兼顾功耗与带宽需求。

ADS1299核心优势

  • 8通道同步采样,相位误差趋近于零。
  • 内置基准电压源和自校准功能,减少外部电路依赖。
  • 专门处理生物电信号,电路设计的时候直接采用它比起自己设计电路要轻松许多。
    ads1299

四、10-20系统:电极定位的“坐标地图”

10-20系统是国际通用的电极放置标准,确保不同设备数据可比性。 也就是人为约定的电极放置位置,这样大家都这么放置,我们就用编号来描述位置,就像门牌号一样。当你看到别人的文章中写着下图中的某个编号,你就马上知道这个指的是哪个位置。
10-20系统

1. 定位规则

  • 基准点测量
    • 以**鼻根(Nasion)枕外隆凸(Inion)**为前后基准,头围周长确定电极间距(10%或20%)。
  • 电极命名
    • 字母代表脑区:F(额叶)、C(中央)、P(顶叶)、O(枕叶)、T(颞叶)。
    • 数字表示位置:奇数左半球,偶数右半球,z为中线。
    • 示例:C3 = 左中央区,Pz = 顶叶中线。

2. 扩展系统

  • 10-10系统:在10-20基础上增加62个电极,用于高密度EEG研究;
  • 10-5系统:电极间距更密(5%头围),适用于脑源定位分析。

3. 实际应用

  • 临床诊断:癫痫病灶定位需固定Fp1/Fp2等颞区电极;
  • 科研实验:P300成分分析常关注Pz、Cz点。

五、技术挑战与未来方向

  • 噪声抑制:运动伪迹和肌电干扰仍是动态采集的难题(如自适应滤波算法);
  • 柔性电子:纳米材料电极(如石墨烯)可降低接触阻抗,提升穿戴舒适性;
  • 片上系统(SoC):集成ADC与AI芯片,实现实时脑电特征提取(如癫痫预警)。

结语

脑电波采集是生物电信号处理技术的集大成者,需融合生物物理、电子工程和算法设计。理解电极特性、ADC处理逻辑及10-20系统,是开展EEG研究的基石。未来,随着柔性电子与AI技术的进步,脑电采集将更便携、智能,推动脑科学走向日常生活。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值