牛客小白月赛98

比赛链接:https://ac.nowcoder.com/acm/contest/85598#question

骰子魔术

思路

看有没有骰子掷出的点数 a i a_i ai 与朋友说的点数 x x x 相等即可。

复杂度

时间复杂度 O ( n ) O(n) O(n),空间复杂度 O ( 1 ) O(1) O(1)

代码实现

#include <bits/stdc++.h>
using namespace std;

int main()
{
    int n, m;
    cin >> n >> m;
    for (int i = 1; i <= n; i++) {
        int x;
        cin >> x;
        if (x == m) {
            cout << "YES\n";
            return 0;
        }
    }
    cout << "NO";
}

最少剩几个?

思路

对于操作 1 1 1 a i + a j a_i+a_j ai+aj 是奇数,那么 a i , a j a_i,a_j ai,aj 必然是一偶一奇,意味着要删去 x x x 个偶数就需要有 x x x 个奇数与之匹配。
对应操作 2 2 2 a i + a j a_i+a_j ai+aj 是奇数,那么 a i , a j a_i,a_j ai,aj 必然都是奇数,意味着奇数可以两两消去。

令偶数数量为 c 0 c_0 c0,奇数数量为 c 1 c_1 c1
因为偶数只有一种删除方法,所以优先删去偶数,而删去的偶数需要和奇数一一匹配,所以两者的数量减少了 m i n ( c 0 , c 1 ) min(c_0,c_1) min(c0,c1)

然后就只剩奇数,因为奇数可以两两消去,如果剩余数量为偶数则可以消完,否则会剩下一个,因此将 c 1 c_1 c1 2 2 2 取模即可。

复杂度

时间复杂度 O ( n ) O(n) O(n),空间复杂度 O ( 1 ) O(1) O(1)

代码实现

#include <bits/stdc++.h>
using namespace std;

int main()
{
    int n;
    cin >> n;
    int c[2] = { 0 };
    for (int i = 1; i <= n; i++) {
        int x;
        cin >> x;
        c[x % 2]++;
    }
    int v = min(c[0], c[1]);
    c[0] -= v, c[1] -= v;
    //     奇偶一一匹配
    c[1] %= 2;
    //     奇数间两两消去
    cout << c[0] + c[1];
}

两个函数

思路

1,当 x = 1 x=1 x=1 时,直接输出 a a a 即可。

2,当 x > 1 x>1 x>1 时, g ( x ) = f ( f ( 1 ) ) + f ( f ( 2 ) ) + f ( f ( 3 ) ) + . . . + f ( f ( x − 1 ) ) = f ( a ) + f ( 2 a ) + f ( 3 a ) + . . . + f ( ( x − 1 ) a ) = a 2 + 2 a 2 + 3 a 2 + . . . + ( x − 1 ) a 2 g(x) = f(f(1)) + f(f(2)) + f(f(3)) + ... + f(f(x-1))=f(a)+f(2a)+f(3a)+...+f((x-1)a)=a^2+2a^2+3a^2+...+(x-1)a^2 g(x)=f(f(1))+f(f(2))+f(f(3))+...+f(f(x1))=f(a)+f(2a)+f(3a)+...+f((x1)a)=a2+2a2+3a2+...+(x1)a2
提出公因子可得, g ( x ) = ( 1 + 2 + 3 + . . . + ( x − 1 ) ) a 2 = ( x − 1 ) ( 1 + x − 1 ) 2 ∗ a 2 = x ( x − 1 ) 2 ∗ a 2 g(x) = (1+2+3+...+(x-1))a^2 = \frac{(x-1)(1+x-1)}{2}*a^2 = \frac{x(x-1)}{2}*a^2 g(x)=(1+2+3+...+(x1))a2=2(x1)(1+x1)a2=2x(x1)a2

综上, g ( x ) = { a , x = 1 x ( x − 1 ) 2 ∗ a 2 , x > 1 g(x) = \begin{cases} a,x=1 \\ \frac{x(x-1)}{2}*a^2,x>1 \end{cases} g(x)={a,x=12x(x1)a2,x>1,因为题目需要对 m o d = 998244353 mod = 998244353 mod=998244353 取模,所以计算 1 2 \frac{1}{2} 21 需要求 2 2 2 的逆元,用快速幂求 2 m o d − 2 2^{mod-2} 2mod2 即可。

细节

注意,模数为 998244353 998244353 998244353,相乘操作可能会超过 l o n g   l o n g long \ long long long 的数据范围,所以数据类型至少要用 u n s i g n e d   l o n g   l o n g unsigned \ long \ long unsigned long long 计算。

复杂度

时间复杂度 O ( 1 ) O(1) O(1),空间复杂度 O ( 1 ) O(1) O(1)

代码实现

#include <bits/stdc++.h>
using namespace std;

#define int long long

const int mod = 998244353;

unsigned long long qmi(unsigned long long a, int b)
{
    int res = 1;
    while (b) {
        if (b & 1)
            res = res * a % mod;
        b >>= 1;
        a = a * a % mod;
    }
    return res;
}

signed main()
{
    ios::sync_with_stdio(0);
    cin.tie(0), cout.tie(0);

    int v = qmi(2, mod - 2);
    // 2的逆元,即模意义下的 1/2

    int T;
    cin >> T;
    while (T--) {
        int a, x;
        cin >> a >> x;
        if (x == 1) {
            cout << a % mod << '\n';
        } else {
            int ans = (unsigned long long)qmi(a, 2) * (x - 1) % mod * x % mod * v % mod;
            cout << ans << '\n';
        }
    }
}

切割 01 串 2.0

思路

注意到字符串的长度不大,上界为 500 500 500,且切割操作相当于分割区间,联想到可以用区间 d p dp dp 解决问题。

状态表示

f [ l ] [ r ] f[l][r] f[l][r] 表示对区间 [ l , r ] [l,r] [l,r] 的连续子串做切割操作能进行的最多次操作

初始化

默认为 0 0 0 即可,表示没法操作

状态转移

对于区间 [ l , r ] [l,r] [l,r],可以通过切割操作得到区间 [ l , k ] , [ k + 1 ] [ r ] [l,k],[k+1][r] [l,k],[k+1][r],因此 f [ l ] [ r ] = m a x ( f [ l ] [ k ] + f [ k + 1 ] [ r ] + 1 ) ( l ≤ k < r ) f[l][r] = max(f[l][k] + f[k+1][r] + 1)(l \le k < r) f[l][r]=max(f[l][k]+f[k+1][r]+1)(lk<r)

可以发现,长度大的区间 [ l , r ] [l,r] [l,r] 是从长度小的区间 [ l , k ] , [ k + 1 , r ] [l,k],[k+1,r] [l,k],[k+1,r] 转移来的,所以按长度从小到大计算区间的对应值。

根据题目要求, [ l , k ] [l,k] [l,k] 0 0 0 出现的次数 c 0 c_0 c0 [ k + 1 , r ] [k+1,r] [k+1,r] 1 1 1 出现的次数 c 1 c_1 c1,需要满足 L ≤ ∣ c 0 − c 1 ∣ ≤ R L \le |c_0-c_1| \le R Lc0c1R

因为状态 f [ l ] [ r ] f[l][r] f[l][r] 的数量级为 n 2 n^2 n2,每次枚举 k k k 计算对应的 f [ l ] [ r ] f[l][r] f[l][r],总体的复杂度为 O ( n 3 ) O(n^3) O(n3),而 n n n 最大为 500 500 500,如果每次再遍历计算 c 0 , c 1 c_0,c_1 c0,c1,复杂度近似 O ( n 4 ) O(n^4) O(n4),显然会超时,所以需要对 0 , 1 0,1 0,1 的数量进行前缀和预处理,这样就可以直接查询对应区间中 0 , 1 0,1 0,1 的数量。

最后的答案为整个字符串即区间 [ l , r ] [l,r] [l,r] 的最大切割次数,对应 f [ 1 ] [ n ] f[1][n] f[1][n]

复杂度

时间复杂度 O ( n 3 ) O(n^3) O(n3),空间复杂度 O ( n 2 ) O(n^2) O(n2)

代码实现

#include <bits/stdc++.h>
using namespace std;

#define int long long

const int N = 505;

int n, L, R;
int a[N], b[N], f[N][N];
string str;

signed main()
{
    ios::sync_with_stdio(0);
    cin.tie(0), cout.tie(0);

    cin >> n >> L >> R >> str;
    str = ' ' + str;
    for (int i = 1; i <= n; i++) {
        a[i] = a[i - 1] + (str[i] == '0');
        b[i] = b[i - 1] + (str[i] == '1');
    }
    for (int i = 1; i <= n; i++) {
        for (int l = 1; l + i - 1 <= n; l++) {
            int r = l + i - 1;
            for (int k = l; k < r; k++) {
                int c0 = a[k] - a[l - 1];
                int c1 = b[r] - b[k];
                // 判断左侧子串和右侧子串0,1的差值是否满足条件
                if (L <= abs(c0 - c1) && abs(c0 - c1) <= R) {
                    f[l][r] = max(f[l][r], f[l][k] + f[k + 1][r] + 1);
                }
            }
        }
    }
    cout << f[1][n];
}

and xor or

思路

f ( l , r ) = ( a l & a l + 1 & . . . & a r ) ⊕ ( a l ∣ a l + 1 ∣ . . . ∣ a r ) f(l,r) = (a_l \& a_{l+1} \& ... \& a_r)\oplus (a_l | a_{l+1}| ... | a_r) f(l,r)=(al&al+1&...&ar)(alal+1∣...∣ar)

求满足 2 k 1 ≤ f ( l , r ) < 2 k 2 2^{k_1} \le f(l,r) < 2^{k_2} 2k1f(l,r)<2k2 的区间数量,相当于满足 f ( l , r ) ≥ 2 k 1 f(l,r) \ge 2^{k_1} f(l,r)2k1 的区间数量减去满足 f ( l , r ) ≥ 2 k 2 f(l,r) \ge 2^{k_2} f(l,r)2k2 的区间数量。

2 k 2^k 2k 转换为二进制为 ( 1000.... ) 2 (1000....)_2 (1000....)2,即除了从低到高第 k k k 位为 1 1 1 外,其他位都为 0 0 0,显然要不小于 2 k 2^k 2k,需要在不小于 k k k 位上的二进制位存在至少一个 1 1 1

因为 0 ≤ a i ≤ 1 0 18 < 2 61 0 \le a_i \le 10^{18} < 2^{61} 0ai1018<261,所以位数的上界为 61 61 61,因此 f ( l , r ) f(l,r) f(l,r) 若满足上述条件,就需要在 [ k , 61 ] [k,61] [k,61] 的二进制位上至少有一个 1 1 1

考虑单独的一个二进制位,注意到 f ( l , r ) f(l,r) f(l,r) 最后一步计算是异或 ⊕ \oplus ,如果计算结果为 1 1 1,由异或的性质可以得到 ( a l & a l + 1 & . . . & a r ) (a_l \& a_{l+1} \& ... \& a_r) (al&al+1&...&ar) ( a l ∣ a l + 1 ∣ . . . ∣ a r ) (a_l | a_{l+1}| ... | a_r) (alal+1∣...∣ar)$ 这两个值其中一个为 1 1 1,另一个为 0 0 0。显然后者为 0 0 0,前者一定为 0 0 0,所以只需要考虑 a l & a l + 1 & . . . & a r = 0 , a l ∣ a l + 1 ∣ . . . ∣ a r = 1 a_l \& a_{l+1} \& ... \& a_r = 0,a_l | a_{l+1}| ... | a_r=1 al&al+1&...&ar=0,alal+1∣...∣ar=1 的情况。

从小到大枚举区间右端点 r r r,当前在第 j j j 位上,如果距离 r r r 最近的 1 1 1 下标为 b j b_j bj,最近的 0 0 0 下标为 c j c_j cj,那么当 l ∈ [ 1 , c j ] l \in [1,c_j] l[1,cj]时, a l & a l + 1 & . . . & a r = 0 a_l \& a_{l+1} \& ... \& a_r = 0 al&al+1&...&ar=0,当 l ∈ [ 1 , b j ] l \in [1,b_j] l[1,bj] 时, a l ∣ a l + 1 ∣ . . . ∣ a r = 1 a_l | a_{l+1}| ... | a_r=1 alal+1∣...∣ar=1,因此,当 l ∈ [ 1 , b j ] ∪ [ 1 , c j ] = [ 1 , m i n ( b j , c j ) ] l \in [1,b_j] \cup [1,c_j] = [1,min(b_j,c_j)] l[1,bj][1,cj]=[1,min(bj,cj)] 时, f ( l , r ) f(l,r) f(l,r) 在第 j j j 位上存在 1 1 1

因为在 [ k , 61 ] [k,61] [k,61] 的二进制位上至少有一个 1 1 1 即可满足条件,所以对于枚举的右端点 r r r,使得 f ( l , r ) f(l,r) f(l,r) 满足条件的左端点的选择区间即为 [ 1 , m a x ( m i n ( b j , c j ) ) ] ( k ≤ j ≤ 61 ) [1,max(min(b_j,c_j))](k \le j \le 61) [1,max(min(bj,cj))](kj61),满足 f ( l , r ) ≥ 2 k f(l,r) \ge 2^k f(l,r)2k 的区间数量,即为所有的右端点 r r r 所对应的左端点的选择区间的长度和。

通过上述做法即可求出满足 f ( l , r ) ≥ 2 k 1 f(l,r) \ge 2^{k_1} f(l,r)2k1 的区间数量和满足 f ( l , r ) ≥ 2 k 2 f(l,r) \ge 2^{k_2} f(l,r)2k2 的区间数量,两者相减即为答案。

复杂度

时间复杂度 O ( n log ⁡ n ) O(n \log n) O(nlogn),空间复杂度 O ( log ⁡ n ) O(\log n) O(logn)

代码实现

#include <bits/stdc++.h>
using namespace std;

#define int long long

const int N = 5e5 + 5, M = 62;

int n, k1, k2;
int a[N], b[M], c[M], f[N][M];

inline int ask(int bit)
{
    int res = 0;
    // 注意要把数组初始化
    for (int i = bit; i < M; i++) {
        b[i] = c[i] = 0;
    }
    for (int i = 1; i <= n; i++) {
        int r = 0;
        // 满足条件的左端点的可选最大区间[1,r]的右端点
        for (int j = bit; j < M; j++) {
            if ((a[i] >> j) & 1) {
                b[j] = i;
                // b[j] 为第j位上最接近的1的下标,如果当前下标为i时第j位为1则更新为i
            } else {
                c[j] = i;
                // 同理,如果当前下标为i时,第j位为0则最接近坐标更新为0
            }
            r = max(r, min(b[j], c[j]));
            // 在第j位上l的可选区间为[1,min(b[j],c[j])]
        }
        res += r;
    }
    return res;
}

signed main()
{
    ios::sync_with_stdio(0);
    cin.tie(0), cout.tie(0);

    cin >> n >> k1 >> k2;
    for (int i = 1; i <= n; i++) {
        cin >> a[i];
        for (int j = 0; j < M; j++) {
            f[i][j] = (a[i] >> j) & 1;
            f[i][j] += f[i - 1][j];
        }
    }
    int ans = ask(k1) - ask(k2);
    cout << ans << '\n';
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值