
机器学习入门
文章平均质量分 76
张起灵ovo
这个作者很懒,什么都没留下…
展开
-
机器学习——无监督学习(k-means算法)
机器学习,无监督学习中的K-Means聚类算法,图解以及实例。原创 2024-07-06 19:10:32 · 1651 阅读 · 0 评论 -
机器学习——逻辑回归
逻辑回归是一个二分类算法,本文主要介绍了逻辑回归流程以及逻辑回归的损失评估,报考精确率和召回率,F1-score,ROC曲线和AUC指标,最后以癌症预测为案例并查看各种评估指标。原创 2024-07-06 14:48:42 · 2415 阅读 · 0 评论 -
机器学习——岭回归
岭回归(Ridge Regression)和线性回归(Linear Regression)都是用于回归分析的统计方法原创 2024-07-05 20:09:06 · 1281 阅读 · 0 评论 -
机器学习---线性回归
线性回归原创 2024-07-05 19:46:48 · 1011 阅读 · 0 评论 -
机器学习——随机森林
随机森林及其案例原创 2024-07-05 01:02:41 · 900 阅读 · 0 评论 -
决策树分类案例(鸢尾花分类)
使用决策树对鸢尾花进行分类,并进行可视化原创 2024-07-04 14:22:02 · 293 阅读 · 0 评论 -
机器学习——决策树及其可视化
决策树及其可视化,利用天气决定是否打网球为例,来进行训练,并输出可视化文件。原创 2024-07-03 16:38:52 · 852 阅读 · 0 评论 -
机器学习——朴素贝叶斯算法
介绍了朴素贝叶斯与普通贝叶斯分类,并列举了如何计算贝叶斯概率以及分类流程,最后以垃圾短信分类为例,可发现朴素贝叶斯在文本处理能力出色。原创 2024-07-03 15:06:52 · 1235 阅读 · 0 评论 -
机器学习案例--使用KNN邻近算法预测Facebook用户签到位置
此时正确率较低,是因为筛选了经纬度固定的用户数据,但是我们在处理数据时还新增了一些数据,且过滤掉了次数少于3次的地点,最后,KNN是一个基于距离的算法,对线性关系处理较好。数据通常包括用户ID、签到时间、签到地点的经纬度、位置ID等。其中,row_id表示数据对应的id,在预测时无作用,x,y表示对应的经纬度,而accuracy表示测量进度,time表示时间戳(1970年1月1日起始),place_id为签到位置对应的id。:给定用户的签到记录,预测用户未来可能签到的地点(place_id)原创 2024-06-15 02:41:00 · 1103 阅读 · 0 评论 -
KNN邻近算法&模型评估与调优(网格搜索和交叉验证)
模型评估与调优以及KNN邻近算法,根据最近的一个或者多个邻居判断自己的类型。原创 2024-06-11 15:43:38 · 1373 阅读 · 0 评论 -
特征预处理---标准化
特征预处理--标准化原创 2024-06-10 03:19:33 · 579 阅读 · 0 评论 -
特征降维&主成分分析
PCA主成分分析&特征降维。如何去除相关性较强的特征?原创 2024-06-10 20:25:56 · 850 阅读 · 0 评论 -
特征抽取--文本特征抽取和字典特征抽取
在做训练前,对于给定的数据,可能会出现字符串、bool值等类型数据,这一步的工作就是就是将此类特征转化成机器学习时所需要的数据特征。原创 2024-05-31 22:17:00 · 823 阅读 · 0 评论 -
数据集的切分
数据集的切分,train_test_split()方法原创 2024-05-31 21:49:47 · 762 阅读 · 0 评论 -
数据集的调用
sklearn中大小规模数据集的调用原创 2024-05-30 13:49:49 · 615 阅读 · 0 评论 -
机器学习入门1(学习笔记)
机器学习前沿知识原创 2024-05-29 20:37:23 · 456 阅读 · 0 评论