自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 收藏
  • 关注

原创 保姆级双目测距原理及代码

双目立体视觉测距,包括畸变矫正、立体校正、视差计算和三维重建。首先,代码从读取相机标定参数,包括内外参、畸变系数等,并使用进行立体校正,确保左右相机的图像对齐。接着,利用计算视差图,并通过WLS(加权最小二乘滤波)进行优化,使视差图更加平滑,减少噪声。然后,使用将视差图转换为 3D 坐标,获取每个像素点的真实三维位置。图片模式image_mode)用于处理静态图像,相机模式)用于实时获取双目相机的视频流,并进行测距。用户可以点击深度图像查看对应点的 3D 坐标。

2025-03-16 12:14:01 2605 12

原创 相机标定原理

摄像机标定过程,简单的可以描述为:通过标定板可以得到n个对应的世界坐标三维点Xi(归一化后的平面)和对应的图像坐标二维点xi(畸变后的),这些三维点到二维点的转换都可以通过上面提到的相机内参K ,相机外参 R 和t,以及畸变参数 D ,经过一系列的矩阵变换得到。

2025-03-16 10:34:45 871

原创 Batch Normalization 和 Layer Normalization

上图展示了一个batch size为2的Batch Normalization的计算过程,假设feature1、feature2分别是由image1、image2经过一系列卷积池化后得到的特征矩阵,feature的channel为2,那么x(1)代表该batch的所有feature的channel1的数据,同理x(2)代表该batch的所有feature的channel2的数据。然后分别计算每个通道的均值与方差。注意是一个向量不是一个值,向量的每一个元素代表着一个维度(channel)的方差。

2025-02-25 22:18:10 1532

原创 常见激活函数介绍

在接触到深度学习(Deep Learning)后,特别是神经网络中,我们会发现在每一层的神经网络输出后都会使用一个函数(比如Relu,Relu和sigmoid等等)对结果进行运算,这个函数就是激活函数(Activation Function)。那么为什么需要添加激活函数呢?如果不添加又会产生什么问题呢?首先,我们知道神经网络模拟了人类神经元的工作机理,激活函数(Activation Function)是一种添加到人工神经网络中的函数,旨在帮助网络学习数据中的复杂模式。

2025-02-23 22:58:54 845

原创 卷积基础知识

卷积公式如上所示,以下图为例,对这个卷积公式进行理解其中,f(t)表示随着时间的进食量,g(t)表示随着时间剩余食物的比例。问题:下午两点肚子里剩余食物?1. 8点吃,到下午两点剩余的食物:f(8)* g(14-8)2. 10点吃,到下午两点剩余的食物:f(10)* g(14-10)3.12点吃,到下午两点剩余的食物:f(12)* g(14-12)

2025-02-23 17:32:23 1741

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除